

Horizon 2020 European Union Funding for Research & Innovation

Introduction to QM/MM

Emiliano Ippoliti

Forschungszentrum Jülich

Tutorial with

Energy and Forces

DFT + GPW basis set

(Mixed Gaussian and PW)

https://www.cp2k.org/features

- Optimisation
 - Geometry optimisation
 - Nudged elastic band
 - ...
- Molecular Dynamics
 - Born-Oppenheimer MD
 - ...
- Properties
 - Atomic charges (RESP, Mulliken, ...)
 - Spectra
 - Frequency calculations
 - ...

Outline

First part

- Why QM?
- Elements of Computational Quantum Chemistry
- Why QM/MM?

Second part

QM/MM couplings

QM description

There are cases where the dynamical behavior of the **electrons** of your systems cannot be neglected and a <u>quantum mechanical</u> <u>description</u> is required:

- 1. Chemical reactions (e.g. enzymatic reactions): electron transfer, bond breaking and bond formation
- 2. Systems with metal atoms (e.g. metallo proteins): no universal parametrization for metal atoms
- 3. Proton transport (e.g. aerobic generation of ATP and oxygen): Grotthuss mechanism (charge/topological diffusion vs mass diffusion)
- 4. Spectroscopic analysis and prediction(e.g. absorption and fluorescence spectra)

Schödinger Equation (SE)

$$i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{x}_1, \dots, \mathbf{x}_N, t) = \widehat{\mathcal{H}}(\mathbf{x}_1, \dots, \mathbf{x}_N) \Psi(\mathbf{x}_1, \dots, \mathbf{x}_N, t)$$

• $\Psi(\mathbf{x}_1, \dots, \mathbf{x}_N, t) =$ system wavefunction

 $|\Psi(\mathbf{x}_1, \dots, \mathbf{x}_N, t)|^2 \propto$ charge density distribution

$$O(t) = \int \dots \int \Psi(\mathbf{x}_1, \dots, \mathbf{x}_N, t)^* \,\widehat{O}(\mathbf{x}_1, \dots, \mathbf{x}_N) \,\Psi(\mathbf{x}_1, \dots, \mathbf{x}_N, t) \,d\mathbf{x}_1 \dots d\mathbf{x}_N$$

• $\widehat{\mathcal{H}}(\mathbf{x}_1, ..., \mathbf{x}_N) = \text{Hamiltonian operator}$

e.g.
$$\hat{\mathcal{H}} = -\sum_{I} \frac{\hbar^2}{2M_I} \nabla_I^2 - \sum_{i} \frac{\hbar^2}{2m_e} \nabla_i^2 + \sum_{i < j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|} - \sum_{i,I} \frac{e^2 Z_I}{|\mathbf{R}_I - \mathbf{r}_i|} + \sum_{I < J} \frac{e^2 Z_I Z_J}{|\mathbf{R}_i - \mathbf{R}_j|}$$

 \mathbf{r}_i = electronic coordinates, \mathbf{R}_i = nuclear coordinates

Time-dependent and time-independent SE

Time-independent Schrödinger equation

$$\widehat{\mathcal{H}}(\mathbf{r}_1,\ldots,\mathbf{R}_N)\Psi(\mathbf{r}_1,\ldots,\mathbf{R}_N)=E\ \Psi(\mathbf{r}_1,\ldots,\mathbf{R}_N)$$

Solving numerical methods

- Hartree Fock Theory
- Møller-Plesset Perturbation Theory
- **Coupled Cluster**

• • •

- Generalised Valence Bond
- Complete Active Space SCF
- **Density Functional Therory**

Time-dependent Schrödinger equation

Molecular dynamics schemes

- Ehrenfest
- Born-Oppenheimer
- Car-Parrinello
- Kühne

• • •

Born-Oppenheimer approximation

- Motion of atomic nuclei and electrons can be treated separately
- Nuclear motion can be treated **classically**

 $m_{\rho} << M_I$

 $i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}_1, \dots, \mathbf{R}_N, t) = \widehat{\mathcal{H}}(\mathbf{r}_1, \dots, \mathbf{R}_N) \Psi(\mathbf{r}_1, \dots, \mathbf{R}_N, t)$

Born-Oppenheimer MD scheme

time-independent SE, \mathbf{R}_I are here only parameters

$$\begin{cases} \widehat{\mathcal{H}}_{e}(\mathbf{r}_{1}, \dots, \mathbf{R}_{N})\psi_{0}(\mathbf{r}_{1}, \dots, \mathbf{r}_{N}) = E_{0}\psi_{0}(\mathbf{r}_{1}, \dots, \mathbf{r}_{N}) & \mathbf{r}_{i} = \text{electronic coordinates} \\ M_{I}\ddot{\mathbf{R}}_{I}(t) = -\nabla_{I}\min_{\psi_{0}}\{\langle\psi_{0}|\widehat{\mathcal{H}}_{e}|\psi_{0}\rangle\} & \mathbf{R}_{I} = \text{nuclear coordinates} \end{cases}$$

classical Newton equation: $\min_{\psi_0}\{\langle\psi_0|\widehat{\mathcal{H}}_e|\psi_0
angle\}$ is the potential felt by the nuclei

$$\widehat{\mathcal{H}} = -\sum_{I} \frac{\hbar^2}{2M_I} \nabla_I^2 - \sum_{i} \frac{\hbar^2}{2m_e} \nabla_i^2 + \sum_{i < j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|} - \sum_{i,I} \frac{e^2 Z_I}{|\mathbf{R}_I - \mathbf{r}_i|} + \sum_{I < J} \frac{e^2 Z_I Z_J}{|\mathbf{R}_i - \mathbf{R}_j|} =$$

$$= -\sum_{I} \frac{\hbar^2}{2M_I} \nabla_I^2 - \widehat{\mathcal{H}}_e(\mathbf{r}_1, \dots, \mathbf{R}_N)$$

Algorithm

At each time step:

- Solving the time-independent SE
- Use ψ_0 to find the forces on nuclei
- Move the nuclei

7

Electronic Structure Methods

Time-independent Schrödinger equation

$$\widehat{\mathcal{H}}(\mathbf{r}_1,\ldots,\mathbf{R}_N)\Psi(\mathbf{r}_1,\ldots,\mathbf{R}_N) = E \Psi(\mathbf{r}_1,\ldots,\mathbf{R}_N)$$

Many numerical methods to solve it approximately:

- Hartree Fock Theory
- Møller-Plesset Perturbation Theory
- Coupled Cluster

...

- Generalised Valence Bond
- Complete Active Space SCF
- Density Functional Theory

Best compromise between accuracy and computational cost

Very suitable for large systems

Density Functional Theory (DFT)

Hohenberg–Kohn Theorems

1. The ground state energy is a unique functional of the electronic density:

$$E = E[\rho]$$

2. The functional for the energy $E[\rho]$ is variational:

$$\min_{\Psi_0} \{ \langle \Psi_0 | \widehat{\mathcal{H}}_e | \Psi_0 \rangle \} = \min_{\rho} E[\rho]$$

Benefit:

 $\psi_0(\mathbf{r}_1,...,\mathbf{r}_n)$ function of 3 x number of electron coordinates (*n*) $\rho(\mathbf{r})$ function of 3 coordinates

Drawback:

functional $E[\rho]$ is not known

Kohn-Sham DFT

Kohn and Sham define a fictitious system of non-interacting particles with a local potential that generates the same density as the density of the real fully-interacting system:

Finding Kohn-Sham orbitals φ_i by iterative procedure

For a given (fixed) ionic configuration \mathbf{R}^{N} :

1. Solve KS equations for an initial or a previous density ρ :

$$\left\{-\frac{1}{2}\nabla^2 + V_{\text{ext}}(\mathbf{r}) + \int d\mathbf{r}' \frac{\rho'(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|} + \frac{\delta E_{\text{xc}}[\rho]}{\delta \rho(\mathbf{r})}\right\} \varphi_i(\mathbf{r}) = \epsilon_i \varphi_i(\mathbf{r}) \quad \longleftarrow$$

2. Determine the updated density:

$$\rho^{new}(\mathbf{r}) = \sum_{i} |\varphi_i(\mathbf{r})|^2$$

3. Check if convergence is reached:

$$\int d\mathbf{r} |\rho^{new}(\mathbf{r}) - \rho(\mathbf{r})| < \text{Threshold}$$
Yes: exit

 $\rho(\mathbf{r}) = \rho^{new}(\mathbf{r})$

Basis set

$$\left\{-\frac{1}{2}\nabla^2 + V_{\text{ext}}(\mathbf{r}) + \int d\mathbf{r}' \frac{\rho'(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|} + \frac{\delta E_{\text{xc}}[\rho]}{\delta\rho(\mathbf{r})}\right\}\varphi_i(\mathbf{r}) = \epsilon_i\varphi_i(\mathbf{r}) \qquad \text{KS equations}$$

Discretization:

 $\begin{pmatrix} & \dots & \\ \vdots & \ddots & \vdots \end{pmatrix} \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = \epsilon_i \begin{pmatrix} a_1 \\ \vdots \\ a \end{pmatrix}$

$$\varphi_i(\mathbf{r}) \simeq \sum_{k=1}^M a_k g_k(\mathbf{r})$$

 $\{g_k(\mathbf{r})\} = \mathsf{Basis set}$

+

+

±

Localized GTOs

- + Atomic orbital-like
- + Few functions needed
- + Analytic integration for many operators
- + Optimal for regular grids
- + Finite extend
- Non-orthogonal
- Linear dependences for large basis set
- Complicated to generate
- Basis set superposition error

12

Nonlocal

PW

Independent from

atomic position

Naturally period

Many function needed

Ortogonal

Gaussian and Plane Waves method (GPW)

Biological system sizes

Largest systems investigated at full QM level \leq 10,000 atoms

Typical biological system sizes >> 10,000 atoms

Multiscale approach: QM/MM

Combining different levels of theory and resolutions

QM/MM Approach

The system is separated into two parts:

A small **QM part** comprises the **chemically/photophysically active region** treated by computationally demanding electronic structure methods.

QM/MM Interface

The remainder **MM part** is **described efficiently** at a lower level of theory by classical force fields.

