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In	the	final	part	of	this	introduction,	I	will	discuss	some	topics	that	were	left	out	
from	the	previous	two	parts,	and	that	you	have	seen	or	you	are	going	to	see	in	the	
CP2K	tutorials.	
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In	particular,	

- I	will	give	more	details	about	the	exchange	correlation	functionals	with	
the	focus	on	the	ones	available	on	CP2K,		

- I	will	discuss	the	Grimme	dispersion	corrections	to	cure	a	deficiency	of	
such	functionals,	

- then,	I	will	introduce	the	concept	of	pseudopotential,		
- and	finally,	I	want	to	add	few	words	about	the	basis	sets.	
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We	mentioned	in	a	previous	lecture	that	the	electronic	problem	can	be	solved	
within	the	framework	of	the	Density	Functional	Theory	by	using	the	scheme	of	
Kohn	and	Sham,	which	leads	to	solve	the	Kohn-Sham	(KS)	equations	here.	The	
functional	form	of	all	the	terms	in	the	KS	equations	are	known,	apart	from	the	so-
called	exchange-correlation	energy	functional	E_xc,	which	depends	on	the	
electron	density	rho.	

The	name	of	this	term	recalls	that	it	should	contain	both	the	exchange	
interaction,	related	to	the	Pauli	repulsion	when	we	are	dealing	with	electrons,	
and	the	Coulomb	correlation,	that	is	a	measure	of	how	much	the	motion	of	one	
electron	is	affected	by	the	presence	of	all	other	electrons.	

DFT	is	an	exact	theory	in	principle,	but	to	be	used	in	practice,	that	is	to	be	able	to	
write	and	solve	the	KS	equations,	it	requires	a	guess,	an	approximation,	of	the	
exchange-correlation	functional.	During	the	years	scientists	have	built	and	tested	
several	functionals	in	order	to	provide	educated	guesses	for	this	unknown	term.	
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The	simplest	approximation,	and	therefore	also	the	first	one	to	be	devised,	is	the	
so-called	Local	Density	Approximation	(or	LDA).	This	assumes	that	the	exchange-
correlation	energy	at	a	point	r	in	the	space,	is	simply	equal	to	the	exchange-
correlation	energy	of	a	homogeneous	electron	gas	that	has	the	same	density	at	
that	point.	



The	analytical	form	of	the	exchange	term	is	easy	to	retrieve	in	this	particular	
case,	while	the	most	common	parametrisations	for	the	correlation	part	are	
obtained	by	interpolating	the	accurate	values	coming	from	quantum	Monte	Carlo	
simulations	of	the	homogeneous	electron	gas	at	various	densities.	

By	definition,	the	Local	Density	Approximation	ignores	corrections	to	the	
exchange-correlation	energy	due	to	inhomogeneities	in	the	electron	density	
around a	point	r.	Considering	this	inexact	nature	of	this	approximation,	it	may	at	
first	seem	somewhat	surprising	that	it	was	so	successful	in	estimating	for	
example	many	atomic	properties.	This	can	be	partially	attributed	to	the	fact	that	
LDA	gives	the	correct	sum	rule	to	the	so-called	exchange-correlation	hole,	
meaning	that	there	is	a	total	electronic	charge	of	one	electron	excluded	from	the	
neighbourhood	of	the	electron	at	the	point	r.	

In	spite	of	its	success	mainly	for	atomic	properties,	the	Local	Density	
Approximation	is	known	to	overbind,	particularly	in	molecules.		

For	this	reason,	in	chemistry	more	sophisticated	approximations	are	commonly	
employed,	as	for	example	the	Generalised	Gradient	Approximation	(or	GGA).	This	
approximation	attempts	to	incorporate	the	effects	of	inhomogeneities	by	
including	the	gradient	of	the	electron	density;	as	such	one	refers	to	this	kind	of	
approaches	as	semi-local	methods.	

Of	course,	there	is	no	unique	form	for	the	GGA,	and	indeed	many	variants	have	
been	proposed	in	the	years.	Most	of	them	are	available	on	CP2K.	An	example	is	
the	very	popular	Becke	and	Lee,	Yang,	Parr	approximation	(in	short	BLYP)	or	the	
Perdew-Burke-Ernzerhof	(in	short	PBE)	that	you	use	in	the	practicals	and…	
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…whose	analytic	expressions	I	have	sketched	in	this	scary	slide	for	your	
reference.	Of	course,	I	have	not	time	to	describe	them	in	detail	here.	Just	
summarizing,	the	BLYP	authors	found	most	of	the	functional	parameters	by	
fitting	experimental	data,	while	PBE	functional	was	built	mainly	via	analytical	
and	theoretical	arguments.		

The	Generalised	Gradient	Approximation	significantly	succeeds	in	reducing	the	
effects	of	LDA	overbinding	but	it	is	still	problematic	in	some	contexts	as	for	
example	the	estimation	of	static	properties,	like the	atomization	and	dissociation	
energies, the	bond	lengths and the	vibrational	frequencies,	but	also	the	
estimation	of	dynamical	properties,	such	as	the	diffusion	coefficients	in	liquids	
like	in	water,	due,	ultimately,	to	a	poor	description	of	the	covalent	O-H	bond	
stretching	of	the	water	molecule.	

Historically,	one	of	the	first	way	to	go	beyond	the	Generalised	Gradient	
Approximation	brought	to	the	development	of	the	so-called	hybrid	functionals.	
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These	are	a	class	of	approximations	to	the	exchange–correlation	energy	
functional	that	incorporates	a	portion	of	exact	exchange	from	Hartree–Fock	
theory	with	the	rest	of	the	exchange–correlation	energy	from	other	sources,	both	
ab	initio	and	empirical,	and	in	particular	from	the	Generalised	Gradient	
Approximation.	

A	popular	example	of	hybrid	functional	is		

- the	B3LYP	functional,	derived	combining	the	BLYP	correlation	with	the	
exact	exchange	in	this	peculiar	way,		

- and	another	one	is	the	PBE0	functional,	whose	correlation	part	comes	
from	the	PBE	functional.	

Hybrid	functionals	significantly	improve	the	accuracy	of	all	the	molecular	
properties	mentioned	before.		

Regarding	the	cons,	a	drawback	of	hybrid	functionals	is	that	the	exact	exchange	
term	is	computational	expensive	to	calculate	within	the	framework	of	plane	wave	
basis	set.	Another	issue	of	the	hybrid	functionals	that	really	is	shared	with	the	
previously	mentioned	functionals,	and	in	fact	is	intrinsic	to	DFT,	is	that	there	are	
still	difficulties	to	properly	describe	intermolecular	interactions,	which	are	of	
critical	importance	to	understanding	for	example	chemical	reactions,	especially	
van	der	Waals	forces,	and	in	particular	dispersion	forces.	The	incomplete	
treatment	of	this	kind	of	forces	can	adversely	affect	the	accuracy	of	DFT	in	the	
treatment	of	systems	which	are	dominated	by	dispersion	(e.g.	interacting	noble	
gas	atoms)	or	where	dispersion	competes	significantly	with	other	effects:	this	is	
for	example	the	case	of	the	biomolecules	or	large	systems	in	general.		

How	can	we	overcome	this	deficiency?	Let’s	go	a	bit	more	in	depth	of	this	
problem.	
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The	London	dispersion	forces	are	a	type	of	forces	acting	between	atoms	and	
molecules	that	are	normally	electrically	neutral	and	symmetric,	like	the	
fullerenes	in	the	picture,	that	is	the	electrons	are	symmetrically	distributed	with	
respect	to	the	nuclei	in	the	atoms,	and	therefore	there	are	no	net	charges	but	also	
no	permanent	dipoles.	

In	fact,	the	London	dispersion	can	be	considered	a	long-ranged	electron	
correlation	effect.	If	R	is	the	separation	distance	between	the	two	interacting	
neutral	objects,	the	London	dispersion	energy	term	can	be	approximately	
described	to	asymptotically	scale,	for	large	R,	as	1	over	R	to	the	power	of	6.	This	
should	bring	to	mind	one	of	the	two	terms,	the	attractive	one,	in	the	Lennard-
Jones	potential,	that	is	the	potential	that	you	find	in	any	molecular	dynamics	
force	field	to	phenomenologically	describe	the	van	der	Waals	interactions.	

Now,	this	London	part	of	the	correlation	is	not	included	in	standard	KS-DFT.	
Why?	The	technical	reason	can	be	traced	back	in	the	absence	in	DFT	of	a	correct	



description	of	the	quantum	fluctuations,	that	is	the	excitations	to	virtual	orbitals,	
that	is	unoccupied	orbitals.	The	quantum	fluctuations	become	important	when	
and	where	the	electron	density	is	almost	zero.	This	is	the	case	when	there	is	a	
large	separation	distance	in	between	the	neutral	objects,	where	therefore	the	
density	rho	does	not	contain	significant	dispersion	signature.	

Slide	8	

Various	approaches	are	currently	in	use	and	under	development	to	accurately	
model	the	London	dispersion	interactions	within	the	DFT.	In	this	slide	I	have	
collected	the	names	of	the	most	important	ones.	However,	here	I	would	like	just	
to	shortly	describe	one	of	the	most	popular,	the	DFT-D	method,	also	known	as	the	
Grimme	dispersion	corrections,	because	this	approach	is	used	in	the	tutorials.	
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Really,	with	the	term	Grimme	dispersion	corrections	one	can	refer	to	as	at	least	
three	different	models	developed	in	the	years	and	with	increasing	complexity.	
The	most	recent	ones,	called	DFT-D2	and	DFT-D3	are	implemented	in	CP2K.	
In	general,	in	the	DFT-D	schemes	the	total	energy	is	calculated	as	the	sum	of	the	
usual	self-consistent	KS	energy	as	obtained	from	the	chosen	density	functional	
and	a	dispersion	correction,	which	is	in	turn	a	sum	of	two-body	and	three-body	
energies.	
The	correction	employed	in	the	tutorials	is	the	DFT-D2	scheme,	which,	unlike	the	
DFT-D3,	contains	only	two-body	terms.	In	this	dispersion	correction	scheme,	the	
sum	is	over	all	the	pairs	of	atoms;	R_ij	is	the	interatomic	distance	of	atoms	i	and	j;	
s_6 is	a	global	scaling	parameter	depending	on	the	choice	of	the	employed	
functional	the C6 values	are	calculated	from	the	empirical	atomic	dispersion	
coefficients	according	to	this	expression;	and	finally,	f_damp	is	a	function	that	
damps	the	dispersion	correction	for	shorter	interatomic	distances	in	order	to	
avoid	near	singularities	at	small	distances	but	also	mid-range	double-counting	
effects	of	correlation	at	intermediate	distances.		
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In	the	first	lecture	we	discussed	the	concept	of	basis	set.	We	mentioned	the	two	
main	classes	of	basis	sets,	the	localized	basis	set	and	the	nonlocal	or	plane	wave	
one,	and	we	also	mentioned	that	CP2K	takes	somehow	advantage	of	both	of	
them.		

A	drawback	of	the	PW	basis	set	is	that	to	describe	atomic	wavefunctions	a	large	
number	of	basis	functions	are	needed,	much	larger	than	the	number	necessary	to	
reach	the	same	accuracy	with	a	localized	basis	set.		

In	this	table	there	is	a	basis	set	size	comparison	in	representing	a	simple	1s	
Slater-type	function.	Note	how	large	the	difference	heavier	the	atoms.	
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The	real	problem	is	to	accurately	describe	the	wavefunctions	for	those	electrons	
that	are	closer	to	the	nucleus,	because	those	wavefunctions	show	more	
oscillations	near	the	nucleus	than	the	ones	associated	to	the	outermost	electrons.	

Therefore,	an	idea	to	overcome	this	PW	basis	set	issue	is	to	replace	the	electronic	
degrees	of	freedom	that	are	more	problematic	to	represent	with	plane	waves,	by	
effective	potentials	to	add	to	the	Hamiltonian	in	order	to	correct	the	dynamics	of	
the	remaining	electrons	and	compensate	for	the	missing	interactions	with	the	
removed	electrons.		

Of	course,	we	would	like	these	effective	potentials	or	pseudopotentials,	as	they	
are	commonly	called	because	they	do	not	represent	any	real	interaction,	to	be	
additive	and	transferable,	which	impose	to	choose	only	atomic	pseudopotentials,	
that	is	a	pseudopotential	per	each	atomic	species	and	to	remove	only	core	
electrons,	that	is	the	chemically	inert	ones.	
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To	sum	up,	the	idea	is	to	replace	the	full-potential	in	the	KS	equations,	that	is	the	
all-electron	potential,	with	the	interaction	potential	between	the	valence	
electrons	plus	the	pseudopotentials	associated	to	each	atom	of	the	system.	The	
core	electrons	are	eliminated, and the	valence	electrons	are	described	by	so-
called	pseudo-wavefunctions	with	significantly	fewer	nodes,	that	is	oscillations,	
close	to	the	nucleus.	This	allows	the	pseudo-wavefunctions	to	be	described	with	
far	fewer basis	functions,	making	the	PW	basis	set	practical	to	use.	In	this	
approach	only	the	chemically	active	valence	electrons	are	therefore	treated	
explicitly,	while	the	core	electrons	are	'frozen',	being	considered	together	with	
the	nuclei	as	rigid	non-polarizable	ion	cores.	

Once	chosen	the	level	of	theory	to	use,	that	is	once	chosen	the	exchange-
correlation	functional,	a	pseudopotential	for	each	atomic	species	can	be	derived	
from	an	atomic	reference	state,	by	requiring	that	the	pseudo-	and	real	all-
electron	valence	wavefunctions	have	to	have	the	same	energies	and	amplitude	
(and	thus	the	same	density)	outside	a	chosen	core	cut-off	radius r_c.		

However,	this	simple	and	necessary	condition	is	not	sufficient	to	uniquely	
determine	the	set	of	atomic	pseudopotentials.	Different	alternatives	are	possible	
and	additional	conditions	can	be	imposed.	Therefore,	many	different	
pseudopotential	recipes	have	been	devised	in	the	years	with	different	features,	
pros	and	cons.	
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One	of	the	most	widely	used	classes	of	pseudopotentials	is	the	so-called	norm-
conserving	pseudopotentials,	which	requires	the	four	conditions	here	listed	to	be	
met.	



Even	these	additional	conditions	are,	though,	not	sufficient	to	uniquely	
determine	the	analytic	form	of	the	pseudopotential	for	any	atomic	species.		

Therefore,	during	the	years	many	different	kinds	of	norm-conserving	
pseudopotentials	have	been	developed	and	here	I	listed	some	related	references.	

Most	of	the	available	pseudopotentials	in	CP2K	are	of	this	kind,...	
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...	including	the	Goedecker,	Teter,	Hutter	pseudopotentials	or	GTH	
pseudopotentials,	sometimes	called	also	Gaussian	and	dual	space	
pseudopotentials,	which	are	the	ones	employed	in	the	practicals	of	this	course.	

As	for	many	other	norm-conserving	pseudopotentials	the	GTH	pseudopotentials	
are	formed	by	a	local	part,	which	does	not	depend	on	the	angular	momentum,	
and	a	nonlocal	part,	which	does.	Some	details	are	reported	in	this	slide	for	your	
reference	but	are	not	relevant	now.	What	it	is	important	to	emphasize	here	is	the	
reason	why	GTH	pseudopotentials	are	so	popular	within	the	CP2K	community	
and	for	us.	These	pseudopotentials	

- are	separable,	a	nice	property	for	efficient	computation;	
- give	in	fact	optimal	efficiency	in	numerical	calculations	using	plane	waves	

as	a	basis	set;	
- at	most,	only	seven	coefficients	are	necessary	to	specify	its	analytic	form;	
- but	above	all,	they	have	optimal	decay	properties	in	both	real	and	Fourier	

space.	From	this	the	name	of	dual	space	pseudopotentials.	Because	of	this	
property,	the	application	of	the	nonlocal	part	of	the	pseudopotential	to	a	
wave	function,	usually	the	most	computationally	expensive	part	of	the	
calculations	involving	pseudopotentials,	can	be	done	efficiently	on	a	grid	
in	real	space.	And	real	space	integration	is	much	faster	for	large	systems	
like	biomolecules,	than	ordinary	multiplication	in	Fourier	space,	since	the	
scaling	of	these	operations	in	the	real	space	is	quadratic	with	respect	to	
the	size	of	the	system,	while	in	the	Fourier	space	is	cubic.	

Therefore,	the	use	of	GTH	pseudopotentials	significantly	contributes	to	the	CP2K	
capability	to	scale	very	efficiently	with	respect	to	the	size	of	the	system,	a	feature	
this	for	which	CP2K	stands	out	from	many	other	quantum	codes.	
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If	you	use	pseudopotentials,	as	you	do	in	the	practicals	by	employing	a	GPW	
scheme,	that	is	a	Gaussian	and	Plane	Wave	approach,	the	choice	of	the	localized	
basis	set	has	to	be	made	in	combination	with	the	specific	chosen	pseudopotential	
class.	



In	the	case	of	the	GTH	pseudopotentials,	CP2K	offers	many	possible	basis	sets	
among	which	to	choose.	The	first	choice	is	about	the	type	of	basis	functions	to	
consider.		

We	mentioned	before	the	Slater	functions,	in	principle	very	suitable	as	basis	
functions	because	very	similar	to	the	orbital	solutions	of	the	Schrödinger	
equation	for	an	atom.	However,	nowadays	a	more	common	and	computationally	
efficient	choice	is	to	use	the	Gaussian	type	functions.	These	primitive	functions	
resemble	less	an	orbital	solution	of	the	atomic	Schrödinger	equation,	but	
combining	some	of	them	together	and	building	the	so-called	contracted	
functions,	we	can	have	results	similar	to	the	ones	with	the	Slater	functions	but	
this	kind	of	basis	set	is	computationally	more	efficient,	because	computing	
integrals	of	Gaussians	is	much	easier	for	a	computer	than	computing	integrals	of	
Slater	functions.	

The	second	choice	in	selecting	the	basis	set	is	about	its	accuracy,	which	
corresponds	in	this	case	to	the	number	of	basis	functions	you	want	to	use	to	
describe	the	atomic	wavefunctions.	The	smallest	basis	set	employs	only	enough	
functions	for	a	minimum	description	of	the	occupied	orbitals	of	the	neutral	
atoms	and	is	called	a	minimum	or	Single	Zeta	(SZ)	basis	set	(zeta	refers	to	the	
letter	usually	used	for	the	exponent	of	the	primitive	functions).		
For	example,	for	hydrogen	and	helium	atoms,	a	Single	Zeta	basis	set	has	only	a	
single	s-function.	For	the	elements	in	the	second	row	in	the	periodic	system	it	
means	two	s-functions	(1s	and	2s)	and	one	set	of	p-functions	(2p_x,	2p_y	and	
2p_z).	
The	next	improvement	of	the	basis	set	is	a	doubling	of	all	basis	functions	used	for	
each	atomic	orbital,	producing	a	Double	Zeta	(DZ)-type	basis.	Then,	the	next	step	
up	in	basis	set	size	is	a	Triple	Zeta	(TZ)	and	so	on.	
In	the	names	of	the	basis	sets	reported	in	this	table,	which	correspond	to	the	
names	you	can	find	in	CP2K,	appear	always	the	letter	“V”,	which	stands	for	
“valence”	and	refers	to	the	fact	that	by	using	pseudopotentials	our	electronic	
degrees	of	freedom	will	be	only	the	valence	electrons	and	not	the	core	ones.	
In	addition,	as	you	can	see	from	this	table,	while	the	size	of	the	basis	sets	
increases,	they	are	usually	complemented	with	additional	functions,	called	
polarisation	functions	and	identified	with	the	final	“P”	in	the	name.	In	fact,	to	
improve	the	accuracy	in	representing	the	molecular	orbitals,	functions	with	
higher	angular	momentum	than	the	valence	orbitals	have	been	shown	to	became	
important,	in	particular	for	better	descriptions	of	bonding	but	also	for	taking	into	
account	polarization	effects,	hence	the	name.	

In	the	tutorials,	a	Double	Zeta	Valence	basis	set	with	a	single	set	of	polarization	
functions	is	selected.	In	fact,	this	basis	set	is	the	smallest	basis	set	commonly	
considered	suitable	for	production	runs.	

Moreover,	among	the	different	basis	sets	offered	by	CP2K,	you	will	probably	focus	
on	the	so-called	MOLOPT	subclass,	that	is	the	basis	sets	optimized	for	molecular	
calculations.	This	is	done	by	fitting	the	parameters,	like	the	zeta	exponents	of	the	
primitive	functions	and	the	coefficients	of	the	contracted	functions,	with	respect	



to	a	training	set	of	small	molecules	formed	with	different	elements	and	with	
different	coordination	environments.	

The	lecture	ends	here.	If	you	have	questions	or	doubts,	you	can	ask	them	in	the	
Q&A	session.	


