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Welcome	back.	
In	the	first	part	of	this	lecture,	we	have	seen	how,	in	a	QM/MM	scheme,	a	
molecular	system	is	usually	partitioned,	that	is	a	small	region	treated	at	a	
quantum	level	(computational	expensive),	and	the	rest	of	the	system	with	a	
classical	resolution	(computationally	less	demanding).	
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Obviously,	special	attention	has	to	be	paid	when	coupling	the	quantum	and	the	
classical	regions.	In	particular,	in	the	Hamiltonian	of	this	fictitious	QM/MM	
system	(fictitious	because	the	real	system	is	not	separated	in	two	parts	with	two	
different	physics)	the	potential	energy	contains	three	types	of	interactions:	
	

- interactions	between	particles	in	the	quantum	region,	that	is	between	
electrons	and	nuclei; 

- interactions	between	atoms	in	the	classical	region; 
- and	the	interactions	between	quantum	particles	and	classical	atoms 

	
According	to	how	one	takes	into	account	these	last	interactions,	the	different	
QM/MM	schemes	can	be	grouped	in	subtractive	and	additive	schemes. 
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In	the	subtractive	scheme,	the	potential	energy	of	the	QM/MM	system	is	
obtained	in	three	steps	by	performing	three	independent	calculations:	
	

- First,	the	energy	of	the	total	system	is	evaluated	at	the	MM	level,	for	
example	at	force	field	level.	

- Then,	the	energy	of	the	isolated	quantum	subsystem	is	calculated	at	
quantum	level	and	added	to	the	previous	result.		

- Finally,	the	MM	energy	of	the	QM	subsystem	is	subtracted.	This	to	avoid	
to	count	twice	the	interactions	within	the	QM	subsystem.	

	
The	main	advantage	of	this	QM/MM	coupling	scheme	is	that	in	the	code,	no	
communication	is	required	between	the	quantum	mechanical	and	the	classical	
routines.	This	makes	the	implementation	relatively	straightforward.	
	
However,	there	are	also	several	drawbacks:	
	

- A	major	disadvantage	is	that	in	the	first	and	in	the	third	step,	a	force	field	
is	required	for	the	quantum	subsystem,	which	may	not	always	be	
available.	



- In	addition,	this	force	field	needs	to	be	sufficiently	flexible	to	describe	for	
example	the	effect	of	chemical	changes	when	a	reaction	occurs.	

- A	further	drawback	of	this	class	of	methods	is	the	total	absence	of	
polarization	of	the	electron	density	due	to	the	classical	environment.	This	
shortcoming	can	be	particularly	problematic	when	modelling	for	example	
biological	charge	transfer	processes,	since	these	are	usually	mediated	by	
the	protein	environment.		
 

Therefore,	for	a	realistic	description	of	such	cases	a	more	consistent	treatment	of	
the	interactions	between	the	electrons	and	their	surrounding	environment	is	
needed.	This	can	be	obtained	through	an	additive	scheme. 
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In	the	additive	schemes,	there	are	no	calculations	at	different	resolutions	taking	
place	separately,	but	the	potential	energy	for	the	whole	QM/MM	system	is	a	sum	
of	three	contributions:	
	

- quantum	energy	terms;	
- classical	energy	terms;	
- and	QM/MM	coupling	terms.		

	
In	contrast	to	the	subtractive	schemes,	the	interactions	between	the	particles	in	
the	quantum	region	and	the	classical	atoms	in	the	MM	region	are	treated	
explicitly	in	the	last	term	of	this	expression.	
 
This	additive	approach	is	the	coupling	scheme	implemented	in	the	QM/MM	
interface	of	the	CP2K	code	that	will	be	described	in	the	tutorial. 
	

- The	quantum	energy	term	usually	comes	from	the	DFT	Kohn-Sham	
Hamiltonian. 

- The	classical	energy	term	comes	almost	always	from	a	classical	force	field	
and	its	choice	can	be	limited	by	the	availability	of	force	fields	
implemented	in	the	code. 

- While	the	term	describing	the	interactions	between	QM	and	MM	regions	
is	usually	decomposed	in	two	parts:	the	bonded	and	the	non-bonded	
parts. 

 
The	bonded	part	is	the	part	that	describes	the	covalent	interactions	between	
“quantum”	atoms,	that	is	the	atoms	in	the	quantum	region,	and	classical	atoms	in	
the	MM	region. 
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Therefore,	this	bonded	part	is	present	only	when	the	boundary	between	the	QM	
and	MM	regions	cuts	a	covalent	bond	connecting	a	quantum	atom	to	a	classical	
atom,	as	shown	in	the	picture	if	you	look	at	the	yellow	fragments.	
	



Moreover,	in	this	case,	care	has	to	be	taken	when	evaluating	the	quantum	wave	
function,	that	is	when	you	solve	the	Schrödinger	equation	for	the	quantum	part.	
In	fact,	a	straightforward	cut	through	the	QM/MM	boundary	would	create	one	or	
more	unpaired	electrons	in	the	quantum	subsystem.	In	reality,	these	electrons	
are	paired	in	bonding	orbitals	with	electrons	belonging	to	the	atom	on	the	MM	
side.	However,	now	those	electrons	do	not	exist	in	the	MM	region,	due	to	our	
artificial	partitioning	and	the	lower	level	of	resolution	we	decided	to	use	in	this	
region.	
	
In	literature	a	number	of	approaches	have	been	proposed	to	remedy	the	artefact	
that	origins	from	such	open	valences,	many	of	which	are	available	in	CP2K.	
	

- For	example,	you	can	saturate	the	dangling	valences	with	a	monovalent	
capping	atom,	usually	a	hydrogen	atom,	at	an	appropriate	position	along	
the	bond	vector.		

	
- Alternatively,	it	is	possible	to	use	the	link	atom	pseudopotentials	

approach,	which	consists	in	introducing	in	the	QM	system	a	description	of	
the	classical	atom	at	the	border	bonded	to	the	quantum	atom,	through	a	
special	pseudopotential	with	the	required	valence	charge.	It	can	be	shown	
that	this	method	requires	constraining	the	bond	distance	appropriately.		

	
- Another	approach	is	to	place	a	set	of	hybrid	orbitals	on	the	boundary	

atom	between	the	QM	and	MM	fragments.	One	of	these	is	included	in	the	
QM	region	for	the	self-consistent	optimization	to	find	the	wave	function	of	
the	QM	region,	and	the	others	are	treated	as	auxiliary	orbitals	that	do	not	
participate	in	the	QM	optimization,	but	they	provide	an	effective	electric	
field	that	contributes	to	the	external	potential	felt	by	the	dynamical	
electrons.	
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Let’s	come	back	to	the	QM/MM	energy	coupling	term.	Beyond	the	bonded	part,	
there	is	always	a	non-bonded	part	that	describes	the	interactions	between	the	
QM	and	MM	regions	not	connected	through	a	covalent	bond	(or	a	sequence	up	to	
3	covalent	bonds).	This	part	is	usually	formed	by	a	“steric”	term,	that	is	a	term	
that	takes	into	account	the	van	der	Waals	interactions,	and	a	pure	electrostatic	
term.	
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In	most	of	the	QM/MM	approaches,	including	in	CP2K,	the	interactions	in	
E_QMMM_bonded	and	in	E_QMMM_steric	are	handled	at	the	force	field	level. 
	
This	means	that	for	example	in	the	bonded	term	you	can	find	chemical	bonds	
between	QM	and	MM	atoms	modelled	by	harmonic	potentials,	as	well	as	the	
angles	defined	by	one	QM	atom	and	two	MM	atoms,	but	also	torsions	involving	at	



most	two	QM	atoms,	which	are	commonly	modelled	by	a	periodic	potential	
function.		
	
Similarly,	the	steric	term	is	usually	described	by	a	Lennard-Jones	potential	and	
the	parameters	come	from	the	force	field	used	in	the	MM	part. 
	
The	rest	of	the	non-bonded	interactions,	that	is	the	interactions	between	
quantum	and	classical	atoms	separated	by	three	or	more	atoms	in	the	topology,	
are	included	in	the	electrostatic	term.	This	is	really	an	interaction	between	
classical	partial	charges	in	the	MM	region	and	the	quantum	charge	density.		
	
But	how	is	this	term	calculated	in	practice?	Really,	several	approaches	have	been	
proposed	for	this	term. 
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In	the	so-called	mechanical	embedding,	the	simplest	electrostatic	coupling	
scheme,	the	electronic	wave	function	is	computed	for	an	isolated	QM	subsystem.	
In	other	words,	the	classical	environment	cannot	induce	polarization	on	the	
electron	density	in	the	quantum	region.	 
Within	this	approach,	different	ways	to	get	E_QMMM_electrostatic	have	been	
proposed.	 

- The	simplest	and	very	rough	approximation	consists	to	completely	
neglected	it.	So,	in	this	case	E_QMMM_electrostatic	equals	to	zero. 
Alternatively,	one	can	assign	classical	charges	to	the	atoms	in	the	quantum	
region	and	then	evaluate	E_QMMM_electrostatic	in	the	usual	classical	way,	
i.e.	as	a	sum	of	pairwise	Coulomb	terms	between	these	quantum	atoms	
and	the	classical	atoms.	

- And	for	the	assignment	of	classical	charges	to	quantum	atoms,	people	
have	used	either	a	fixed	set	of	charges	for	the	QM	atoms,	for	example,	
those	given	by	the	force	field,		

- or	they	have	computed	the	charges	somehow,	by	for	example	a	least-
squares	fitting	procedure	to	optimally	reproduce	some	quantity	such	as	
the	electrostatic	potential	at	the	surface	of	the	QM	subsystem,	and	then	
re-compute	the	charges,	ideally	even	at	each	integration	step.	

	
An	improvement	to	this	mechanical	embedding	is	to	include	polarization	effects	
of	the	quantum	region	due	to	the	presence	of	the	classical	atoms	in	the	MM	
region.	In	fact,	in	this	so	called	electrostatic	embedding	scheme,	the	electrostatic	
interactions	between	the	quantum	and	the	MM	subsystem	are	handled	during	
the	computation	of	the	electronic	wave	function,	that	is	the	
E_QMMM_electrostatic,	which	I	remind	you	has	to	be	added	in	the	quantum	
Hamiltonian,	depends	on	both	the	classical	charges	and	the	quantum	charge	
density.	
 
Increasing	further	the	level	of	sophistication	implies	to	include	in	the	model	also	
the	polarizability	of	the	MM	atoms.	In	this	electrostatic	coupling	approach,	called	
polarization	embedding	scheme,	both	regions,	QM	and	MM,	can	mutually	
polarize	each	other.		



Although	this	last	embedding	offers	the	most	realistic	electrostatic	coupling	
between	the	quantum	and	the	classical	regions,	polarizable	force	field	for	
biomolecular	simulations	are	not	so	effective	yet.	Therefore,	despite	progresses	
in	the	development	of	such	force	fields,	QM/MM	studies	with	polarizable	MM	
regions	are	so	far	not	so	popular.	
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The	CP2K	QM/MM	interface	adopt	the	electrostatic	embedding	strategy	that	now	
I	will	describe	in	more	details. 
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By	construction,	the	QM/MM	electrostatic	energy	term	that	in	the	electrostatic	
embedding	one	should	add	to	the	quantum	Hamiltonian	is	the	red	expression	in	
this	slide.	This	means	that	the	electrons	(and	protons)	that	define	rho	“see”	the	
MM	atoms	as	special	nuclei	with	non-integer	and	possibly	even	negative	charges	
q_I.	
	
As	it	is,	this	expression	immediately	raises	two	problems,	originating	from	to	the	
peculiar	short-range	and	long-range	behaviour	of	this	integral:		

- the	so-called	electron	spill-out		
- and	the	very	large	computational	cost	required	to	evaluate	the	integral.	

Let	us	start	with	the	issue	at	short	range.		
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A	problem	that	may	arise	when	using	standard	partial	charges	to	describe	the	
charge	distribution	in	the	MM	subsystem	is	the	risk	of	over-polarization	near	the	
boundary.	Note	that	now	there	are	no	covalent	bonds	in	between	quantum	and	
classical	regions.	However,	also	in	this	case,	the	point	charges	on	the	MM	side	
may	attract	(or	repel)	the	quantum	electrons	too	strongly,	which	could	lead	to	
electron	density	“spilling	out”	into	the	MM	region,	as	sketched	in	the	picture.		
In	reality	this	would	not	be	possible	due	to	the	Pauli	repulsion	of	the	electrons	of	
the	atoms	in	the	MM	regions,	that	however	are	missing	in	a	QM/MM	scheme.	
This	phenomenon	of	electronic	spill-out	at	the	boundary	can	become	serious	if	a	
large	flexible	basis	set	or	worse	a	nonlocal	basis	set	is	used	in	the	QM	
calculations	as	happens	for	example	in	CP2K,	because	with	such	basis	sets	the	
electrons	are	fully	free	to	delocalize.	
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This	artefact	can	be	avoided	by	modelling	classical	charges	as	smeared-out	
charges	instead	of	the	traditional	point	charges,	where	the	smearing	function	can	
be	a	Gaussian	distribution	or	another	suitable	function	centered	at	the	MM	atom.		
 
The	smearing	function	used	in	CP2K	to	this	aim	is	this	one.		



For	the	ones	of	you	that	are	very	interested	to	the	theoretical	details, this	is	the	
exact	potential	energy	function	generated	by	a	Gaussian	charge	distribution.	
 
In	contrast	to	the	point	charge	model,	with	a	smearing	function	the	Coulomb	
interaction	between	the	electrons	and	the	smeared	charge	distribution	does	not	
diverge	if	the	electrons	approach	the	MM	atoms,	as	sketched	in	the	picture.	
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Let’s	now	move	to	the	second	issue	in	the	calculation	of	E_QMMM_electrostatic,	
the	one	at	long-range.	In	fact,	due	to	the	Coulomb	long-range	behaviour,	the	
computational	cost	to	compute	the	electrostatic	QM/MM	energy	term	is	
surprisingly	large.		

In	fact,	this	term	is	typically	evaluated	by	collocating	on	the	nodes	of	a	grid	in	the	
QM	region,	the	contribution	coming	from	the	MM	potential.	Therefore,	the	
number	of	operations	that	a	direct	evaluation	of	this	quantity	requires	can	be	
estimated	as	the	number	of	grid	points	times	the	number	of	MM	classical	atoms.	
Typical	grid	point	numbers	are	of	order	of	millions	in	3D	(~100	times	~100	time	
~100),	while	MM	classical	atoms	are	order	of	10,000	or	even	more	in	systems	of	
biological	interest.	Therefore,	it	is	evident	that	in	a	real	system	a	brute	force	
computation	of	this	term	is	impractical.	

Many	QM/MM	codes	face	the	problem	by	adopting	strategies	such	as	hierarchical	
methods	or	multipole	techniques,	which	are	based	on	the	observation	that	the	
contributions	to	E_QMMM_electrostatic	of	the	MM	atoms	further	and	further	
away	from	the	quantum	region	can	be	replaced	by	less	expensive	expressions.	

These	methods	are	very	effective,	but	require	a	fine	tuning	of	parameters	to	yield	
optimal	performance,	and	which	lead	to	a	loss	of	accuracy	that	makes	error	
control	sometimes	difficult.		

Instead	CP2K	solves	this	problem	by	adopting	a	different	approach	based	on	the	
representation	of	the	electrostatic	potentials	of	the	MM	atoms,	that	is	the	
electrostatic	charge	times	the	smearing	function,	as	a	sum	of	functions	with	
different	widths,	derived	from	the	so-called	Gaussian	expansion	of	the	
electrostatic	potential	(GEEP	in	short)	in	combination	with	the	use	of	a	real	space	
multi-grid	technique.		

Even	if	the	details	of	this	approach	are	a	bit	beyond	what	I	can	introduce	here,	let	
us	try	to	provide	few	more	elements	to	help	you	understanding	this	a	bit	better.	

Slide	14	

The	problem	of	the	large	computational	cost	of	evaluating	E_QMMM_electrostatic	
corresponds	to	the	problem	to	map	efficiently,	in	both	performance	and	
accuracy)	noncompact	functions	(the	left-hand	side	in	GEEP)	on	a	grid	in	the	real	
space.	



Multigrid	approach	means	that	we	use	different	grids,	finer	and	coarser,	to	
represent	on	a	computer	continuous	functions	in	the	real	space,	like	for	example	
the	functions	on	the	right-hand	side	in	the	GEEP	expression.	

Remember	what	we	have	seen	in	the	first	part	of	this	lecture:	each	grid	in	the	real	
space	corresponds	to	a	cutoff	in	the	reciprocal	space,	but	also	the	Gaussian	
functions	in	the	reciprocal	space	have	an	intrinsic	cutoff.	

Now,	if	we	map	a	Gaussian	function	on	the	first	grid	level,	whose	reciprocal	cutoff	
is	equal	to	or	bigger	than	the	intrinsic	cutoff	of	that	Gaussian	function,	then	every	
Gaussian	will	be	represented	on	the	same	number	of	grid	points	irrespective	of	
its	width.	In	practice,	a	grid	with	25	points	per	side	is	usually	sufficient	for	an	
optimal	Gaussian	representation.	

Therefore,	in	practice,	when	calculating	the	E_QMMM_electrostatics,	the	GEEP	
decomposition	allows	converting	the	problem	of	mapping	a	non-compact	
smearing	function	on	a	fine	grid	into	the	mapping	of	N_g	approximately	compact	
Gaussian	functions	on	grids	lower	or	at	least	equal	to	the	fine	grid,	plus	an	
additional	non-compact	function,	R_low,	which	however	is	very	smooth	and	
therefore	it	can	be	mapped	on	the	coarsest	available	grid.	

Why	do	you	do	that?	Because	the	sum	of	the	contributions	of	all	the	grids,	
suitably	interpolated,	is	approximately	equal	to	the	function	mapped	analytically	
on	the	finest	grid,	i.e.	the	result	that	we	want	to	calculate.	But	the	total	cost	of	
decomposition,	collocation	on	a	grid	and	interpolation	results	finally	a	couple	of	
order	of	magnitude	smaller	than	the	direct	evaluation	of	the	potential	on	the	
finest	grid	because	many	Gaussians	functions	contribute	only	partially	or	do	not	
contribute	at	all.		
In	fact,	as	sketch	in	the	picture,	atoms	whose	distance	from	the	QM	box	is	greater	
than	the	Gaussian	collocation	radius	do	not	contribute	to	the	potential	on	that	
grid	level.	However,	all	atoms	contribute	to	the	coarsest	grid	level	through	the	
long-range	R_low	part.	

The	algorithm	to	evaluate	the	QM/MM	electrostatic	potential	on	the	finest	grid	
can	be	outlined	as	follows:	

- 	Each	MM	atom	is	represented	as	a	continuous	Gaussian-like	charge	
distribution	via	the	smearing	function.		

- The	electrostatic	potential	generating	from	this	charge	is	fitted	through	a	
GEEP	expansion.	

- Then,	every	Gaussian	function	of	the	GEEP	expansion	is	mapped	on	the	
first	grid	level	whose	reciprocal	cutoff	is	equal	to	or	bigger	than	the	cutoff	
of	that	particular	Gaussian	function.		

- This	way	we	can	limit	each	Gaussian	to	only	a	finite	domain	without	loss	
of	accuracy,	so	that	only	MM	atoms	embedded	into	the	QM	box,	or	close	to	
it,	will	contribute	to	the	finest	grid,	as	sketch	in	the	picture.	

- Finally,	in	the	last	step	of	the	algorithm,	the	contribution	at	each	grid	level	
is	interpolated	starting	from	the	coarsest	grid	level	up	to	the	finest	level	



because	the	QM/MM	electrostatic	potential	we	are	looking	for,	i.e.	the	one	
with	higher	accuracy,	is	the	one	on	the	finest	grid	level.	

Unlike	other	approaches,	the	lack	of	tuning	parameters	makes	this	multigrid	
implementation	a	totally	free	parameter	scheme,	without	any	significant	loss	of	
accuracy.	Consequently,	very	stable	simulations	can	be	obtained,	with	optimal	
energy	conservation	properties.		

OK,	we	have	arrived	at	the	end	of	this	brief	introduction	to	QM/MM	approaches.	
If	you	have	questions	or	doubts	on	this	part,	I’ll	be	waiting	for	you	in	the	Q/A	
session	in	few	minutes.	


