

GROMACS-CP2K Interface Tutorial (Introduction to QM/MM simulations)

Dmitry Morozov University of Jyväskylä, Finland <u>dmitry.morozov@jyu.fi</u>

Practical: GROMACS + CP2K Part I

- 1. Lecture recap
- 2. Gromacs-CP2K interface for QM/MM
- 3. Setting up a QM/MM calculation
- 4. CP2K input and output

Lecture Recap: Forcefield (MM) - GROMACS

Force field description of MM region

$$\begin{split} V(r_1, r_2, \dots, r_N) &= V_{bonded}(r_1, r_2, \dots, r_N) + V_{non-bonded}(r_1, r_2, \dots, r_N) \\ V_{bonded} &= \sum_{bonds} \frac{1}{2} k_b (r - r_0)^2 + \sum_{angles} \frac{1}{2} k_{\theta} (\theta - \theta_0)^2 + \sum_{torsions} k_{\xi} (\xi - \xi_0)^2 \\ &+ \sum_{torsions} \frac{1}{2} k_{\phi} [1 + \cos(n\phi - \phi_0)] \\ V_{non-bonded} &= \sum_{LJ} 4\epsilon_{ij} \left(\frac{C_{ij}^{(12)}}{r_{ij}^{12}} - \frac{C_{ij}^{(6)}}{r_{ij}^6} \right) + \sum_{Coul.} \frac{q_i q_j}{r_{ij}} \end{split}$$

 $H = H_{MM} + H_{QM} + H_{QM/MM}$ Forcefield Quickstep GEEP

3

GROMACS-CP2K Interface Tutorial

Practical: GROMACS + CP2K Part I

1. Lecture recap

- 2. Gromacs-CP2K interface for QM/MM
- 3. Setting up a QM/MM calculation
- 4. CP2K input and output

GROMACS-CP2K Interface

Quickstep: Mixed Gaussian and Plane wave basis implementation of Density Functional Theory

GEEP: Gaussian Expansion of Electrostatic Potential (GEEP) to compute the QM/MM coupling

GROMACS^{FAST.} FREE.

Forcefield: Classical MM-MM interactions both bonded and non-bonded (PME)

Integration: Classical MD using fully periodic QM/MM forces

$$H = H_{MM} + H_{QM} + H_{QM/MM}$$

Forcefield Quickstep GEEP

Features of the Interface

- Automatized topology conversion from classical MD to QM/MM: charges and bonds modifications, as well as link-atoms setup on the frontier
- Validated CP2K QM parameters setup for the biological systems
- Compatibility with the most simulation techniques available in Gromacs
- Compatibility with Gromacs tools and third-party software for analysis
- Supports highly parallelizable simulation methods, like umbrella sampling

Practical: GROMACS + CP2K Part I

1. Lecture recap

- 2. Gromacs-CP2K interface for QM/MM
- **3**. Setting up a QM/MM calculation
- 4. CP2K input and output

Setup a QM/MM calculation

GROMACS-CP2K Interface Tutorial

GROMACS-CP2K Tutorial files

Open "Practical: GROMACS + CP2K Part I" episode.

Open terminal window and finish "Setting up tutorial environment part"

- >> module load gromacs-cp2k
- >> cd /work/ta025/ta025/<your login name>
- >> git clone https://github.com/bioexcel/2021-04-22-gromacs-cp2k-tutorial.git tutorial
- >> cd tutorial

Exercise 1: Setting up simple QM system

Objective: Make simple QM system with interface QM subsystem : NMA molecule (12 atoms) MM subsystem : No QM charge: 0 QM multiplicity: 1 Functional: PBE

Do the steps (1)-(5) from the "Exercise 1"

MDP Parameters for energy minimization

integrator = steep ; Algorithm (steep = steepest descent minimization) emtol = 10.0 ; Stop minimization when the maximum force < 10.0 kJ/mol/nm emstep = 0.01 ; Energy step size nsteps = 100 ; Maximum number of (minimization) steps to perform

; Set output frequency to each step

nstxout	= 1 ; Coordinates to trr
nstlog	= 1 ; Energies to md.log
nstcalcenergy	= 1; Energies
nstenergy	= 1 ; Energies to ener.edr

; Set cut-offs

rlist	= 0.2 ; NB-search cut-off
rcoulomb	= 0.2 ; Short-range electrostatic cut-off
rvdw	= 0.2 ; Short-range Van der Waals cut-off

; CP2K QMMM parameters

qmmm-active	= true	; Activate QMMM MdModule
qmmm-qmgroup	= Syste	em ; Index group of QM atoms
qmmm-qmmethod	= PBE	; Method to use
qmmm-qmcharge	= 0	; Charge of QM system
qmmm-qmmultiplicity	= 1	; Multiplicity of QM system

>> less nma-em.inp

Input Sections: GLOBAL

&GLOBAL

PRINT_LEVEL LOW PROJECT GROMACS RUN_TYPE ENERGY_FORCE &END GLOBAL

!HIGH/MEDIUM/LOW
! <projectname>
! GEO_OPT/ENERGY_FORCE/BAND

Practical: GROMACS + CP2K Part I

1. Lecture recap

- 2. Gromacs-CP2K interface for QM/MM
- 3. Setting up a QM/MM calculation
- 4. CP2K input and output

Input Section: FORCE_EVAL

&FORCE_EVAL	! parameters for force evaluation
METHOD QMMM	! method employed e.g. QMMM (Quickstep + external charges)
&DFT	! DFT section - all QM
contents of DFT section	
&END DFT	
&QMMM	! QMMM section - set up for QM box
contents of QMMM section	
&END QMMM	
&MM	! MM section - MM point chrages, etc.
contents of MM section	
&END MM	
&SUBSYS	! subsystem - coordinates, atom kinds etc.
contents of SUBSYS section	
&SUBSYS	
&END FORCE_EVAL	

Input Section: DFT

&FORCE_EVAL	
METHOD QMMM	
&DFT	
CHARGE 0	
MULTIPLICITY 1	
BASIS_SET_FILE_NAME BASIS_MOLOPT	! File
POTENTIAL_FILE_NAME POTENTIAL	! File
&MGRID	
NGRIDS 5	! Nun
CUTOFF 450	! Plan
REL_CUTOFF 50	! Cuto
COMMENSURATE	! Alig
&END MGRID	
&SCF	
SCF_GUESS RESTART	! CP2
EPS_SCF 5.0E-8	! Acc
•••	
& END SCE	

File with basis setsFile with peudopotentials

Number of Grids Plane wave cutoff (Rydberg) for finest grid. Cutoff to map product Gaussians onto the grids Align all the grids

CP2K will search for existing *.wfn file Accuracy of SCF convergence

Input Section: DFT

&DFT	
 &XC	
DENSITY_CUTOFF 1.0E-12	! DFT Precision parameters
GRADIENT_CUTOFF 1.0E-12	
TAU_CUTOFF 1.0E-12	
&XC_FUNCTIONAL PBE	! Choice of DFT functional
&END XC_FUNCTIONAL	
&END XC	
&QS	
METHOD GPW	! Mixed Gaussian/Plane-wave method
EPS_DEFAULT 1.0E-10	! Accuracy of SCF energies
EXTRAPOLATION ASPC	! Extrapolation of wavefunction from previous calculation
EXTRAPOLATION_ORDER 4	
&END QS	
&END DFT	

22-23.04.2021

17

Input Section: SUBSYS

&FORCE_EVAL

•••	
&SUBSYS	! specifies information of the system: coordinates, topology, molecules & full cell
&CELL	! Full system box size (will be the same as in Gromacs)
A 10.000 0.000 0.000	! Defined with three vectors A, B, C (in Angstroms)
B 0.000 10.000 0.000	
C 0.000 0.000 10.000	
PERIODIC XYZ	! Fully periodic cell
&END CELL	
•••	

Input Section: KIND

&FORCE_EVAL &SUBSYS	
ELEMENT H	! Each kind of QM atoms should have basis and PP assigned
BASIS_SET DZVP-MOLOPT-GTH	! Gaussian Basis set to be used for Hydrogens
POTENTIAL GTH-PBE	! Make sure Basis and PP match
&END KIND	
& KIND C	! Each kind of QM atoms should have basis and PP assigned
 &END KIND	
•••	
&END SUBSYS	
&END FORCE_EVAL	

Result of the energy minimization

No do the steps (8)-(11) from the "Exercise 1"

22-23.04.2021

20

Result of the molecular dynamics with QM forces

Congratulations, you have done first QM simulation with GROMACS-CP2K Interface!

GROMACS-CP2K Interface Tutorial

Exercise 2: Stilbene isomerization

Objective: Make isomerization Free-energy profile

QM subsystem : Stilbene (26 atoms)

MM subsystem : No

QM charge: 0

QM multiplicity: 1

Functional: PBE

Do the steps (1)-(7) from the "Exercise 2"

- System is stable in state A
- System is stable in state B
- The transitions between states are possible

We want to know what is the barrier ΔE and states relative free-energies ΔG

- Energy profile integrated from the coordinate distribution in each window
- Sufficient overlap between windows needed
- Gromacs has tool gmx wham to perform integration

For further information please follow Umbrella sampling tutorial: http://www.mdtutorials.com/gmx/umbrella/index.html

MDP Parameters: umbrella sampling

>> less qmmm_md_umbrella.mdp

pull = yes pull_ncoords = 1 pull_ngroups = 4 pull_group1_name = gro pull_group2_name = gro pull_group3_name = gro pull_group4_name = gro pull_coord1_type = umbr pull_coord1_geometry = dih pull_coord1_dim = Y Y Y= 1.2pull_coord1_groups pull-coord1-init = -180 = 0.00 pull_coord1_rate = 418.4pull_coord1_k pull-nstxout = 1 pull-nstfout = 1

MDP Parameters: QM/MM

qmmm-active
qmmm-qmgroup
qmmm-qmmethod
qmmm-qmcharge
qmmm-qmmultiplicity

=	true
=	QMator
=	PBE
=	0

= 1

Matoms BE

Isomerization free energy with MM forcefield

Amber14 Forcefield, Gromacs simulation, 1ns each window

>160 KJ/mol isomerization barrier. Lets see how it changes if we will go for QM simulation!

Do the part (9) from the "Exercise 2"

GROMACS-CP2K Interface Tutorial

22-23.04.2021

26

Isomerization free energy with QM

PBE, Gromacs-CP2K simulation for ~100fs (100 steps) for each frame

Isomerization free energy with QM

Isomerization free energy with QM

MM forcefield gives artificially high barrier

Questions?

End of the practical: GROMACS + CP2K Part I

Practical: GROMACS + CP2K Part II

1. Lecture recap (QM/MM, GEEP, PBC)

- 2. Setting up a QM/MM calculation with solvent
- 3. CP2K input and output
- 4. Large protein system setup

Lecture Recap: GEEP for QM/MM Coupling - CP2K

• QM polarization due to the MM part included.

$$E_{electrostatic}^{QM-MM} = \sum_{I \in MM} q_I \int \frac{\rho(\mathbf{r}) \, v_I^{smear}(|\mathbf{r}_i - \mathbf{R}_I|)}{|\mathbf{r}_i - \mathbf{R}_I|} d\mathbf{r}$$

$$q_I v_I^{smear}(|\mathbf{r}_i - \mathbf{R}_I|) = \sum_{N_g} A_g e^{-(|\mathbf{r}_i - \mathbf{R}_I|/G_g)^2} + R_{low}(|\mathbf{r}_i - \mathbf{R}_I|)$$

Real Space multi-grid approach

$$H = H_{MM} + H_{QM} + H_{QM/MM}$$

Forcefield Quickstep GEEP

Fully periodic QM/MM

- GEEP projects electrostatic potential from point charges onto the multi-grid of QM box
- QM-QM periodic interactions are threated efficiently with Quickstep
- Unless the QM and MM box have same dimensions the QM images over PBC will have incorrect periodicity
- Blöchl scheme is used in CP2K to restore full system box periodicity

Laino, T; Mohamed, F; Laio, A; Parrinello, M. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 1 (6), 1176-1184 (2005).

22-23.04.2021

33

Practical: GROMACS + CP2K Part II

1. Lecture recap (QM/MM, GEEP, PBC)

2. Setting up a QM/MM calculation with solvent

- 3. CP2K input and output
- 4. Large protein system setup

Exercise 3: Energy minimization with QM/MM

>> cd ../stilbene_water

Objective: Optimize system with QM/MM **QM subsystem** : Stilbene **MM subsystem** : 1001 waters with TIP3P parameters **QM charge:** 0

QM multiplicity: 1

Functional: PBE

You can download and open stilbene-sol.pdb with PyMOL

Do the steps (1)-(4) from the "Exercise 3"

GROMACS-CP2K Interface Tutorial

Practical: GROMACS + CP2K Part II

1. Lecture recap (QM/MM, GEEP, PBC)

2. Setting up a QM/MM calculation with solvent

3. CP2K input and output

4. Large protein system setup

Input Section: QMMM

&FORCE_EVAL

• •

•	
&QMMM	IDefinition of QM region and QM-MM coupling
&CELL	! QM Cell
A 9.720 0.000 0.000	! Defined with three vectors A, B, C (in Angstroms)
B 0.000 21.740 0.000	
C 0.000 0.000 7.500	
PERIODIC XYZ	! Fully periodic cell
&END CELL	
ECOUPL GAUSS	! QM-MM coupling method (GEEP)
USE_GEEP_LIB 12	! Number of gaussian functions used in GEEP

. . .

Input Section: QMMM

IDefinition of QM region and QM-MM coupling
! Treating periodic QM-MM
! Use Blöchl scheme (decoupling & re-coupling)
1.0E-06
! Hydrogen, which should be treated as QM atoms
3 15 18 20 22 24 26 ! Indexes of atoms starting from

&END QMMM

Input Section: MM

&FORCE_EVAL	
•••	
&MM	! MM region treatment
&FORCEFIELD	
DO_NONBONDED FALSE	! Do NOT do MM-MM point charges and VdW interactions
&END FORCEFIELD	
&POISSON	
&EWALD	
EWALD_TYPE NONE	! Do NOT do MM-MM periodic interactions
&END EWALD	
&END POISSON	
&END MM	

GROMACS handles the description of the MM region!

Input Section: TOPOLOGY

&SUBSYS

```
***

&TOPOLOGY

COORD_FILE_NAME stilbene.pdb

COORD_FILE_FORMAT PDB

CHARGE_EXTENDED TRUE

CONNECTIVITY OFF

&GENERATE

&ISOLATED_ATOMS

LIST 1..26

&END

&END GENERATE

&END TOPOLOGY
```

! grompp will generate pdb with atomic charges for CP2K! Make sure that files exists

! Read charges from PDB Extended Beta field (starting from column 81)! Do not read or generate bonds (MM treated by Gromacs)

! Generate topology consisting of isolated atoms

...

>> less stilbene-sol-opt.inp

&FORCE_EVAL &SUBSYS	
 &QM_KIND H MM_INDEX 2 4 6 9 11 13 15 18 20 22 24 26 &END QM_KIND &QM_KIND C MM_INDEX 1 3 5 7 8 10 12 14 16 17 19 21 23 25 &END QM_KIND	Only stilbene atoms marked as QM
 &END SUBSYS &END FORCE_EVAL	

Questions?

>> less stilbene-sol-opt.pdb

ATOM	22 C	QM	1	18.947 14.687 16.609 1.00 0.00	C 0.000000
ATOM	23 H	QM	1	19.399 13.704 16.735 1.00 0.00	Н 0.000000
ATOM	24 C	QM	1	17.563 14.803 16.517 1.00 0.00	C 0.000000
ATOM	25 H	QM	1	16.951 13.902 16.556 1.00 0.00	H 0.000000
ATOM	26 O	MM	2	1.816 6.680 1.359 1.00 0.00	O -0.834000
ATOM	27 H	MM	2	0.966 6.696 1.800 1.00 0.00	H 0.417000 – TIP3P water
ATOM	28 H	MM	2	1.615 6.408 0.463 1.00 0.00	H 0.417000
ATOM	29 O	MM	2	1.559 2.257 10.377 1.00 0.00	O -0.834000
ATOM	30 H	MM	2	1.900 2.175 11.268 1.00 0.00	H 0.417000
ATOM	31 H	MM	2	1.127 1.420 10.208 1.00 0.00	H 0.417000
ATOM	32 O	MM	2	31.142 4.832 6.637 1.00 0.00	O -0.834000
ATOM	33 H	MM	2	30.197 4.943 6.736 1.00 0.00	H 0.417000
ATOM	34 H	MM	2	31.238 4.242 5.889 1.00 0.00	H 0.417000

••••

....

42

Exercise 3: results of energy minimization

Do step (6) of "Exercise 3".

>> gmx_cp2k energy (reads data from ener.edr file)

• • • •

> 6 (potential energy)

Download and open energy.xvg your need Grace to open file or copy data from file to Excel by columns

Exercise 3: MD simulations

Do steps (7)-(9) of "Exercise 3"

GROMACS-CP2K Interface Tutorial

Practical: GROMACS + CP2K Part II

1. Lecture recap (QM/MM, GEEP, PBC)

- 2. Setting up a QM/MM calculation with solvent
- 3. CP2K input and output
- 4. Large protein system setup

Exercise 4: Protein simulations

>> cd ../phytochrome

D-ring disposition from αf to βf in order of μs

Objective:

D-ring disposition energy barrier ($\alpha_f \longrightarrow \beta_f$)

NEB + umbrella sampling simulations

QM part - Chromophore QM method - PBE/DZVP-MOLOPT-GTH MM Frocefield - Amber03

Do the steps (1)-(3) from the "Exercise 4"

Exercise 4: Protein simulations

>> less phytochrome.inp

22-23.04.2021

47

Protein simulations: umbrella sampling

End of the practical: GROMACS + CP2K Part II

BioExcel Partners

BioExcel is funded by the European Union Horizon 2020 program under grant agreements 675728 and 823830.

Practical: GROMACS + CP2K Part III

- 1. Make protein QMMM system starting from the PDB structure
- 2. Usage of non-standard CP2K input parameters
- 3. Calculation of the absorption spectra for your system

Build protein system from pdb file

GROMACS-CP2K Interface Tutorial

Exercise 5: build protein system from pdb file

>> cd egfp

Objective:

Make QM/MM model of EGFP protein and perform MD simulation **System:** QM part - Chromophore QM method - PBE/DZVP-MOLOPT-GTH MM Forcefield - Amber03

Do the steps (1)-(5) from the "Exercise 5" they are a pure MM simulations

GROMACS-CP2K Interface Tutorial

MDP Parameters: QM/MM

= QMate
= PBE
= -1
= 1

= true oms

22-23.04.2021

54

Exercise 5: build protein system from pdb file

Do the steps (6)-(9) from the "Exercise 5"

Practical: GROMACS + CP2K Part III

1. Make protein QMMM system starting from the PDB structure

- 2. Usage of non-standard CP2K input parameters
- 3. Calculation of the absorption spectra for your system

Objective:

Simulate UV/Vis absorption spectra of EGFP protein **System:** QM part - Chromophore QM method - PBE/DZVP-MOLOPT-GTH TDDFT – for excitation energies MM Frocefield - Amber03

Do the steps (1)-(5) from the "Exercise 6"

GROMACS-CP2K Interface Tutorial

egfp-qmmm-spec.inp

&FORCE_EVAL		
 &DFT		
&END DFT &PROPERTIES &TDDFPT NSTATES MAX_ITER CONVERGE &END TDDFPT &END PROPERT	5 10 NCE [eV] 1.0e-3	 ! Request additional properties to be calculated after SCF ! TDDFT excitations ! Number of excited states to calculate ! Maximum Davidson diagonalization Iterations to be performed ! Convergence of energies in eV
•••		

&END FORCE_EVAL

less md-qmmm-spec.mdp

; CP2K QMMM parameters

qmmm-active

qmmm-qmgroup

qmmm-qmmethod

qmmm-qminputfile

- = true ; Activate QMMM MdModule
- = Qmatoms; Index group of QM atoms
- = INPUT ; Method to use
 - = egfp-qmmm-spec.inp ; external input file

Practical: GROMACS + CP2K Part III

1. Make protein QMMM system starting from the PDB structure

- 2. Usage of non-standard CP2K input parameters
- 3. Calculation of the absorption spectra for your system

Exercise 6: TDDFT excitations

>> less egfp-qmmm-spec.out

Results of TDDFT calculation will look like that:

R-TDDFPT states of multiplicity 1

	State number	Exci ener	itation rgy (eV)	Transit x	ion dipole y	(a.u.) z s	Oscillator strength (a.u.)
TDDFPT	1		2.00058	-3.5991E-02	-5.4149E-02	-7.9349E-03	2.10286E-04
TDDFPT	2		3.08318	1.3797E+00	-1.7284E-01	6.5479E-01	1.78424E-01
TDDFPT	3		3.22153	2.4009E+00	-9.8621E-01	1.1151E+00	6.29837E-01
TDDFPT	4		3.54032	-4.8474E-01	-1.9293E-01	-9.7242E-02	2.44295E-02
TDDFPT	5		3.55772	-5.5083E-01	3.7988E-01	-2.2543E-01	4.34543E-02

We can gather that information over the trajectory:

>> grep "TDDFPT |" egfp-qmmm-spec.out | awk '{ print \$3 " " \$7 }' > excitations

Do the step (7) from the "Exercise 6

GROMACS-CP2K Interface Tutorial

Exercise 6: convolving the spectra

>> less excitations

E_i, eV _____f, a.u.

2.00058 2.10286E-04 3.08318 1.78424E-01 3.22153 6.29837E-01 3.54032 2.44295E-02 3.55772 4.34543E-02 2.04421 2.02664E-04 3.10716 1.86226E-01 3.24825 6.34929E-01 3.56783 3.07195E-02 3.59003 4.00265E-02 2.13146 2.12315E-04 3.12118 1.43032E-01 3.30321 7.14998E-01 3.61706 5.70336E-02 3.67955 2.27674E-02

$$I(E) = \sum_{i}^{N} f * e^{-(E-E_i)^2/\sigma^2}$$

 σ – parameter defining gaussians half-width For example 0.1 eV in that case

Do the step (8) from the "Exercise 6

GROMACS-CP2K Interface Tutorial

Exercise 6: Results

50

40

After 100fs sampling

After 3ps sampling

GROMACS-CP2K Interface Tutorial

Further information

1) CP2K parameters and best practices:

https://docs.bioexcel.eu/qmmm bpg/en/main/

2) Best practices in QM/MM webinar series:

https://bioexcel.eu/events/virtual-workshop-best-practices-in-qmmm-simulation-of-biomolecular-systems/

3) Bioexcel YouTube channel:

https://www.youtube.com/c/BioExcelCoE/videos

BioExcel Partners

BioExcel is funded by the European Union Horizon 2020 program under grant agreements 675728 and 823830.