Coverage for biobb_dna / interbp_correlations / interhpcorr.py: 91%

116 statements  

« prev     ^ index     » next       coverage.py v7.13.0, created at 2025-12-15 18:49 +0000

1#!/usr/bin/env python3 

2 

3"""Module containing the InterHelParCorrelation class and the command line interface.""" 

4from typing import Optional 

5 

6import pandas as pd 

7import numpy as np 

8import matplotlib.pyplot as plt 

9 

10from biobb_common.generic.biobb_object import BiobbObject 

11from biobb_common.tools.file_utils import launchlogger 

12from biobb_dna.utils.loader import load_data 

13 

14 

15class InterHelParCorrelation(BiobbObject): 

16 """ 

17 | biobb_dna InterHelParCorrelation 

18 | Calculate correlation between helical parameters for a single inter-base pair. 

19 | Calculate correlation between helical parameters for a single inter-base pair. 

20 

21 Args: 

22 input_filename_shift (str): Path to .csv file with data for helical parameter 'shift'. File type: input. `Sample file <https://raw.githubusercontent.com/bioexcel/biobb_dna/master/biobb_dna/test/data/stiffness/series_shift_AA.csv>`_. Accepted formats: csv (edam:format_3752). 

23 input_filename_slide (str): Path to .csv file with data for helical parameter 'slide'. File type: input. `Sample file <https://raw.githubusercontent.com/bioexcel/biobb_dna/master/biobb_dna/test/data/stiffness/series_slide_AA.csv>`_. Accepted formats: csv (edam:format_3752). 

24 input_filename_rise (str): Path to .csv file with data for helical parameter 'rise'. File type: input. `Sample file <https://raw.githubusercontent.com/bioexcel/biobb_dna/master/biobb_dna/test/data/stiffness/series_rise_AA.csv>`_. Accepted formats: csv (edam:format_3752). 

25 input_filename_tilt (str): Path to .csv file with data for helical parameter 'tilt'. File type: input. `Sample file <https://raw.githubusercontent.com/bioexcel/biobb_dna/master/biobb_dna/test/data/stiffness/series_tilt_AA.csv>`_. Accepted formats: csv (edam:format_3752). 

26 input_filename_roll (str): Path to .csv file with data for helical parameter 'roll'. File type: input. `Sample file <https://raw.githubusercontent.com/bioexcel/biobb_dna/master/biobb_dna/test/data/stiffness/series_roll_AA.csv>`_. Accepted formats: csv (edam:format_3752). 

27 input_filename_twist (str): Path to .csv file with data for helical parameter 'twist'. File type: input. `Sample file <https://raw.githubusercontent.com/bioexcel/biobb_dna/master/biobb_dna/test/data/stiffness/series_twist_AA.csv>`_. Accepted formats: csv (edam:format_3752). 

28 output_csv_path (str): Path to directory where output is saved. File type: output. `Sample file <https://raw.githubusercontent.com/bioexcel/biobb_dna/master/biobb_dna/test/reference/correlation/inter_hpcorr_ref.csv>`_. Accepted formats: csv (edam:format_3752). 

29 output_jpg_path (str): Path to .jpg file where output is saved. File type: output. `Sample file <https://raw.githubusercontent.com/bioexcel/biobb_dna/master/biobb_dna/test/reference/correlation/inter_hpcorr_ref.jpg>`_. Accepted formats: jpg (edam:format_3579). 

30 properties (dict): 

31 * **basepair** (*str*) - (None) Name of basepair analyzed. 

32 * **remove_tmp** (*bool*) - (True) [WF property] Remove temporal files. 

33 * **restart** (*bool*) - (False) [WF property] Do not execute if output files exist. 

34 * **sandbox_path** (*str*) - ("./") [WF property] Parent path to the sandbox directory. 

35 

36 Examples: 

37 This is a use example of how to use the building block from Python:: 

38 

39 from biobb_dna.interbp_correlations.interhpcorr import interhpcorr 

40 

41 prop = { 

42 'basepair': 'AA', 

43 } 

44 interhpcorr( 

45 input_filename_shift='path/to/shift.csv', 

46 input_filename_slide='path/to/slide.csv', 

47 input_filename_rise='path/to/rise.csv', 

48 input_filename_tilt='path/to/tilt.csv', 

49 input_filename_roll='path/to/roll.csv', 

50 input_filename_twist='path/to/twist.csv', 

51 output_csv_path='path/to/output/file.csv', 

52 output_jpg_path='path/to/output/file.jpg', 

53 properties=prop) 

54 Info: 

55 * wrapped_software: 

56 * name: In house 

57 * license: Apache-2.0 

58 * ontology: 

59 * name: EDAM 

60 * schema: http://edamontology.org/EDAM.owl 

61 

62 """ 

63 

64 def __init__( 

65 self, input_filename_shift, input_filename_slide, 

66 input_filename_rise, input_filename_tilt, 

67 input_filename_roll, input_filename_twist, 

68 output_csv_path, output_jpg_path, 

69 properties=None, **kwargs) -> None: 

70 properties = properties or {} 

71 

72 # Call parent class constructor 

73 super().__init__(properties) 

74 self.locals_var_dict = locals().copy() 

75 

76 # Input/Output files 

77 self.io_dict = { 

78 'in': { 

79 'input_filename_shift': input_filename_shift, 

80 'input_filename_slide': input_filename_slide, 

81 'input_filename_rise': input_filename_rise, 

82 'input_filename_tilt': input_filename_tilt, 

83 'input_filename_roll': input_filename_roll, 

84 'input_filename_twist': input_filename_twist 

85 }, 

86 'out': { 

87 'output_csv_path': output_csv_path, 

88 'output_jpg_path': output_jpg_path 

89 } 

90 } 

91 

92 self.properties = properties 

93 self.basepair = properties.get("basepair", None) 

94 

95 # Check the properties 

96 self.check_properties(properties) 

97 self.check_arguments() 

98 

99 @launchlogger 

100 def launch(self) -> int: 

101 """Execute the :class:`InterHelParCorrelation <interbp_correlations.interhpcorr.InterHelParCorrelation>` object.""" 

102 

103 # Setup Biobb 

104 if self.check_restart(): 

105 return 0 

106 self.stage_files() 

107 

108 # read input 

109 shift = load_data(self.stage_io_dict["in"]["input_filename_shift"]) 

110 slide = load_data(self.stage_io_dict["in"]["input_filename_slide"]) 

111 rise = load_data(self.stage_io_dict["in"]["input_filename_rise"]) 

112 tilt = load_data(self.stage_io_dict["in"]["input_filename_tilt"]) 

113 roll = load_data(self.stage_io_dict["in"]["input_filename_roll"]) 

114 twist = load_data(self.stage_io_dict["in"]["input_filename_twist"]) 

115 

116 # get basepair 

117 if self.basepair is None: 

118 self.basepair = shift.columns[0] 

119 

120 # make matrix 

121 coordinates = ["shift", "slide", "rise", "tilt", "roll", "twist"] 

122 corr_matrix = pd.DataFrame( 

123 np.eye(6, 6), index=coordinates, columns=coordinates) 

124 

125 # shift 

126 # corr_matrix["shift"]["slide"] = shift.corrwith(slide, method="pearson") 

127 corr_matrix.loc["slide", "shift"] = shift.corrwith(slide, method="pearson").values[0] 

128 # corr_matrix["shift"]["rise"] = shift.corrwith(rise, method="pearson") 

129 corr_matrix.loc["rise", "shift"] = shift.corrwith(rise, method="pearson").values[0] 

130 # corr_matrix["shift"]["tilt"] = shift.corrwith(tilt, method=self.circlineal) 

131 corr_matrix.loc["tilt", "shift"] = shift.corrwith(tilt, method=self.circlineal).values[0] # type: ignore 

132 # corr_matrix["shift"]["roll"] = shift.corrwith(roll, method=self.circlineal) 

133 corr_matrix.loc["roll", "shift"] = shift.corrwith(roll, method=self.circlineal).values[0] # type: ignore 

134 # corr_matrix["shift"]["twist"] = shift.corrwith(twist, method=self.circlineal) 

135 corr_matrix.loc["twist", "shift"] = shift.corrwith(twist, method=self.circlineal).values[0] # type: ignore 

136 # symmetric values 

137 # corr_matrix["slide"]["shift"] = corr_matrix["shift"]["slide"] 

138 corr_matrix.loc["shift", "slide"] = corr_matrix.loc["slide", "shift"] 

139 # corr_matrix["rise"]["shift"] = corr_matrix["shift"]["rise"] 

140 corr_matrix.loc["shift", "rise"] = corr_matrix.loc["rise", "shift"] 

141 # corr_matrix["tilt"]["shift"] = corr_matrix["shift"]["tilt"] 

142 corr_matrix.loc["shift", "tilt"] = corr_matrix.loc["tilt", "shift"] 

143 # corr_matrix["roll"]["shift"] = corr_matrix["shift"]["roll"] 

144 corr_matrix.loc["shift", "roll"] = corr_matrix.loc["roll", "shift"] 

145 # corr_matrix["twist"]["shift"] = corr_matrix["shift"]["twist"] 

146 corr_matrix.loc["shift", "twist"] = corr_matrix.loc["twist", "shift"] 

147 

148 # slide 

149 # corr_matrix["slide"]["rise"] = slide.corrwith(rise, method="pearson") 

150 corr_matrix.loc["rise", "slide"] = slide.corrwith(rise, method="pearson").values[0] 

151 # corr_matrix["slide"]["tilt"] = slide.corrwith(tilt, method=self.circlineal) 

152 corr_matrix.loc["tilt", "slide"] = slide.corrwith(tilt, method=self.circlineal).values[0] # type: ignore 

153 # corr_matrix["slide"]["roll"] = slide.corrwith(roll, method=self.circlineal) 

154 corr_matrix.loc["roll", "slide"] = slide.corrwith(roll, method=self.circlineal).values[0] # type: ignore 

155 # corr_matrix["slide"]["twist"] = slide.corrwith(twist, method=self.circlineal) 

156 corr_matrix.loc["twist", "slide"] = slide.corrwith(twist, method=self.circlineal).values[0] # type: ignore 

157 # symmetric values 

158 # corr_matrix["rise"]["slide"] = corr_matrix["slide"]["rise"] 

159 corr_matrix.loc["slide", "rise"] = corr_matrix.loc["rise", "slide"] 

160 # corr_matrix["tilt"]["slide"] = corr_matrix["slide"]["tilt"] 

161 corr_matrix.loc["slide", "tilt"] = corr_matrix.loc["tilt", "slide"] 

162 # corr_matrix["roll"]["slide"] = corr_matrix["slide"]["roll"] 

163 corr_matrix.loc["slide", "roll"] = corr_matrix.loc["roll", "slide"] 

164 # corr_matrix["twist"]["slide"] = corr_matrix["slide"]["twist"] 

165 corr_matrix.loc["slide", "twist"] = corr_matrix.loc["twist", "slide"] 

166 

167 # rise 

168 # corr_matrix["rise"]["tilt"] = rise.corrwith(tilt, method=self.circlineal) 

169 corr_matrix.loc["tilt", "rise"] = rise.corrwith(tilt, method=self.circlineal).values[0] # type: ignore 

170 # corr_matrix["rise"]["roll"] = rise.corrwith(roll, method=self.circlineal) 

171 corr_matrix.loc["roll", "rise"] = rise.corrwith(roll, method=self.circlineal).values[0] # type: ignore 

172 # corr_matrix["rise"]["twist"] = rise.corrwith(twist, method=self.circlineal) 

173 corr_matrix.loc["twist", "rise"] = rise.corrwith(twist, method=self.circlineal).values[0] # type: ignore 

174 # symmetric values 

175 # corr_matrix["tilt"]["rise"] = corr_matrix["rise"]["tilt"] 

176 corr_matrix.loc["rise", "tilt"] = corr_matrix.loc["tilt", "rise"] 

177 # corr_matrix["roll"]["rise"] = corr_matrix["rise"]["roll"] 

178 corr_matrix.loc["rise", "roll"] = corr_matrix.loc["roll", "rise"] 

179 # corr_matrix["twist"]["rise"] = corr_matrix["rise"]["twist"] 

180 corr_matrix.loc["rise", "twist"] = corr_matrix.loc["twist", "rise"] 

181 

182 # tilt 

183 # corr_matrix["tilt"]["roll"] = tilt.corrwith(roll, method=self.circular) 

184 corr_matrix.loc["roll", "tilt"] = tilt.corrwith(roll, method=self.circular).values[0] # type: ignore 

185 # corr_matrix["tilt"]["twist"] = tilt.corrwith(twist, method=self.circular) 

186 corr_matrix.loc["twist", "tilt"] = tilt.corrwith(twist, method=self.circular).values[0] # type: ignore 

187 # symmetric values 

188 # corr_matrix["roll"]["tilt"] = corr_matrix["tilt"]["roll"] 

189 corr_matrix.loc["tilt", "roll"] = corr_matrix.loc["roll", "tilt"] 

190 # corr_matrix["twist"]["tilt"] = corr_matrix["tilt"]["twist"] 

191 corr_matrix.loc["tilt", "twist"] = corr_matrix.loc["twist", "tilt"] 

192 

193 # roll 

194 # corr_matrix["roll"]["twist"] = roll.corrwith(twist, method=self.circular) 

195 corr_matrix.loc["twist", "roll"] = roll.corrwith(twist, method=self.circular).values[0] # type: ignore 

196 # symmetric values 

197 # corr_matrix["twist"]["roll"] = corr_matrix["roll"]["twist"] 

198 corr_matrix.loc["roll", "twist"] = corr_matrix.loc["twist", "roll"] 

199 

200 # save csv data 

201 corr_matrix.to_csv(self.stage_io_dict["out"]["output_csv_path"]) 

202 

203 # create heatmap 

204 fig, axs = plt.subplots(1, 1, dpi=300, tight_layout=True) 

205 axs.pcolor(corr_matrix) 

206 # Loop over data dimensions and create text annotations. 

207 for i in range(len(corr_matrix)): 

208 for j in range(len(corr_matrix)): 

209 axs.text( 

210 j+.5, 

211 i+.5, 

212 f"{corr_matrix[coordinates[j]].loc[coordinates[i]]:.2f}", 

213 ha="center", 

214 va="center", 

215 color="w") 

216 axs.set_xticks([i + 0.5 for i in range(len(corr_matrix))]) 

217 axs.set_xticklabels(corr_matrix.columns, rotation=90) 

218 axs.set_yticks([i+0.5 for i in range(len(corr_matrix))]) 

219 axs.set_yticklabels(corr_matrix.index) 

220 axs.set_title( 

221 "Helical Parameter Correlation " 

222 f"for Base Pair Step \'{self.basepair}\'") 

223 fig.tight_layout() 

224 fig.savefig( 

225 self.stage_io_dict['out']['output_jpg_path'], 

226 format="jpg") 

227 plt.close() 

228 

229 # Copy files to host 

230 self.copy_to_host() 

231 

232 # Remove temporary file(s)  

233 self.remove_tmp_files() 

234 

235 self.check_arguments(output_files_created=True, raise_exception=False) 

236 

237 return 0 

238 

239 def get_corr_method(self, corrtype1, corrtype2): 

240 if corrtype1 == "circular" and corrtype2 == "linear": 

241 method = self.circlineal 

242 if corrtype1 == "linear" and corrtype2 == "circular": 

243 method = self.circlineal 

244 elif corrtype1 == "circular" and corrtype2 == "circular": 

245 method = self.circular 

246 else: 

247 method = "pearson" 

248 return method 

249 

250 @staticmethod 

251 def circular(x1, x2): 

252 x1 = x1 * np.pi / 180 

253 x2 = x2 * np.pi / 180 

254 diff_1 = np.sin(x1 - x1.mean()) 

255 diff_2 = np.sin(x2 - x2.mean()) 

256 num = (diff_1 * diff_2).sum() 

257 den = np.sqrt((diff_1 ** 2).sum() * (diff_2 ** 2).sum()) 

258 return num / den 

259 

260 @staticmethod 

261 def circlineal(x1, x2): 

262 x2 = x2 * np.pi / 180 

263 rc = np.corrcoef(x1, np.cos(x2))[1, 0] 

264 rs = np.corrcoef(x1, np.sin(x2))[1, 0] 

265 rcs = np.corrcoef(np.sin(x2), np.cos(x2))[1, 0] 

266 num = (rc ** 2) + (rs ** 2) - 2 * rc * rs * rcs 

267 den = 1 - (rcs ** 2) 

268 correlation = np.sqrt(num / den) 

269 if np.corrcoef(x1, x2)[1, 0] < 0: 

270 correlation *= -1 

271 return correlation 

272 

273 

274def interhpcorr( 

275 input_filename_shift: str, input_filename_slide: str, 

276 input_filename_rise: str, input_filename_tilt: str, 

277 input_filename_roll: str, input_filename_twist: str, 

278 output_csv_path: str, output_jpg_path: str, 

279 properties: Optional[dict] = None, **kwargs) -> int: 

280 """Create :class:`InterHelParCorrelation <interbp_correlations.interhpcorr.InterHelParCorrelation>` class and 

281 execute the :meth:`launch() <interbp_correlations.interhpcorr.InterHelParCorrelation.launch>` method.""" 

282 return InterHelParCorrelation(**dict(locals())).launch() 

283 

284 

285interhpcorr.__doc__ = InterHelParCorrelation.__doc__ 

286main = InterHelParCorrelation.get_main(interhpcorr, "Load helical parameter file and save base data individually.") 

287 

288if __name__ == '__main__': 

289 main()