Coverage for biobb_mem/mdanalysis_biobb/mda_hole.py: 63%

91 statements  

« prev     ^ index     » next       coverage.py v7.10.6, created at 2025-09-08 09:07 +0000

1#!/usr/bin/env python3 

2 

3"""Module containing the MDAnalysis HOLE class and the command line interface.""" 

4import re 

5import os 

6import numpy as np 

7import pandas as pd 

8from biobb_common.generic.biobb_object import BiobbObject 

9from biobb_common.tools.file_utils import launchlogger 

10import MDAnalysis as mda 

11from mdahole2.analysis import HoleAnalysis 

12 

13 

14class MDAHole(BiobbObject): 

15 """ 

16 | biobb_mem MDAHole 

17 | Wrapper of the MDAnalysis HOLE module for analyzing ion channel pores or transporter pathways. 

18 | MDAnalysis HOLE provides an interface to the HOLE suite of tools to analyze pore dimensions and properties along a channel or transporter pathway. The parameter names and defaults follow the `MDAnalysis HOLE <https://www.mdanalysis.org/mdahole2/api.html>`_ implementation. 

19 

20 Args: 

21 input_top_path (str): Path to the input structure or topology file. File type: input. `Sample file <https://github.com/bioexcel/biobb_mem/raw/main/biobb_mem/test/data/A01JD/A01JD.pdb>`_. Accepted formats: crd (edam:3878), gro (edam:2033), mdcrd (edam:3878), mol2 (edam:3816), pdb (edam:1476), pdbqt (edam:1476), prmtop (edam:3881), psf (edam:3882), top (edam:3881), tpr (edam:2333), xml (edam:2332), xyz (edam:3887). 

22 input_traj_path (str): Path to the input trajectory to be processed. File type: input. `Sample file <https://github.com/bioexcel/biobb_mem/raw/main/biobb_mem/test/data/A01JD/A01JD.xtc>`_. Accepted formats: arc (edam:2333), crd (edam:3878), dcd (edam:3878), ent (edam:1476), gro (edam:2033), inpcrd (edam:3878), mdcrd (edam:3878), mol2 (edam:3816), nc (edam:3650), pdb (edam:1476), pdbqt (edam:1476), restrt (edam:3886), tng (edam:3876), trr (edam:3910), xtc (edam:3875), xyz (edam:3887). 

23 output_hole_path (str): Path to the output HOLE analysis results. File type: output. `Sample file <https://github.com/bioexcel/biobb_mem/raw/main/biobb_mem/test/reference/mdanalysis_biobb/hole.vmd>`_. Accepted formats: vmd (edam:format_2330). 

24 output_csv_path (str): Path to the output CSV file containing the radius and coordinates of the pore. File type: output. `Sample file <https://github.com/bioexcel/biobb_mem/raw/main/biobb_mem/test/reference/mdanalysis_biobb/hole_profile.csv>`_. Accepted formats: csv (edam:format_3752). 

25 properties (dic - Python dictionary object containing the tool parameters, not input/output files): 

26 * **start** (*int*) - (None) Starting frame for slicing. 

27 * **stop** (*int*) - (None) Ending frame for slicing. 

28 * **steps** (*int*) - (None) Step for slicing. 

29 * **executable** (*str*) - ("hole") Path to the HOLE executable. 

30 * **select** (*str*) - ("protein") The selection string to create an atom selection that the HOLE analysis is applied to. 

31 * **cpoint** (*list*) - (None) Coordinates of a point inside the pore (Å). If None, tries to guess based on the geometry. 

32 * **cvect** (*list*) - (None) Search direction vector. If None, tries to guess based on the geometry. 

33 * **sample** (*float*) - (0.2) Distance of sample points in Å. This value determines how many points in the pore profile are calculated. 

34 * **end_radius** (*float*) - (22) Radius in Å, which is considered to be the end of the pore. 

35 * **dot_density** (*int*) - (15) [5~35] Density of facets for generating a 3D pore representation. 

36 * **remove_tmp** (*bool*) - (True) [WF property] Remove temporal files. 

37 * **restart** (*bool*) - (False) [WF property] Do not execute if output files exist. 

38 * **sandbox_path** (*str*) - ("./") [WF property] Parent path to the sandbox directory. 

39 

40 Examples: 

41 This is a use example of how to use the building block from Python:: 

42 

43 from biobb_mem.mdanalysis_biobb.mda_hole import mda_hole 

44 prop = { 

45 'select': 'protein', 

46 'executable': 'hole' 

47 } 

48 mda_hole(input_top_path='/path/to/myTopology.pdb', 

49 input_traj_path='/path/to/myTrajectory.xtc', 

50 output_hole_path='/path/to/hole_analysis.csv', 

51 output_hole_path='/path/to/hole_profile.csv', 

52 properties=prop) 

53 

54 Info: 

55 * wrapped_software: 

56 * name: MDAnalysis 

57 * version: 2.7.0 

58 * license: GNU 

59 * ontology: 

60 * name: EDAM 

61 * schema: http://edamontology.org/EDAM.owl 

62 """ 

63 

64 def __init__(self, input_top_path, input_traj_path, output_hole_path, output_csv_path=None, 

65 properties=None, **kwargs) -> None: 

66 properties = properties or {} 

67 

68 # Call parent class constructor 

69 super().__init__(properties) 

70 self.locals_var_dict = locals().copy() 

71 

72 # Input/Output files 

73 self.io_dict = { 

74 "in": {"input_top_path": input_top_path, "input_traj_path": input_traj_path}, 

75 "out": {"output_hole_path": output_hole_path, "output_csv_path": output_csv_path} 

76 } 

77 

78 # Properties specific for MDAHole 

79 self.start = properties.get('start', None) 

80 self.stop = properties.get('stop', None) 

81 self.steps = properties.get('steps', None) 

82 self.executable = properties.get('executable', 'hole') 

83 self.select = properties.get('select', 'protein') 

84 self.cpoint = properties.get('cpoint', None) 

85 self.cvect = properties.get('cvect', None) 

86 self.sample = properties.get('sample', 0.2) 

87 self.end_radius = properties.get('end_radius', 22) 

88 self.dot_density = properties.get('dot_density', 15) 

89 self.properties = properties 

90 

91 # Check the properties 

92 self.check_properties(properties) 

93 self.check_arguments() 

94 

95 @launchlogger 

96 def launch(self) -> int: 

97 """Execute the :class:`MDAHole <mdanalysis_biobb.mda_hole.MDAHole>` object.""" 

98 

99 # Setup Biobb 

100 if self.check_restart(): 

101 return 0 

102 self.stage_files() 

103 

104 # Load the universe 

105 u = mda.Universe(self.stage_io_dict["in"]["input_top_path"], 

106 self.stage_io_dict["in"]["input_traj_path"]) 

107 # save current directory and move to temporary 

108 cwd = os.getcwd() 

109 os.chdir(self.stage_io_dict.get("unique_dir")) 

110 # Create HoleAnalysis object 

111 hole = HoleAnalysis( 

112 universe=u, 

113 select=self.select, 

114 cpoint=self.cpoint, 

115 cvect=self.cvect, 

116 sample=self.sample, 

117 executable=self.executable, 

118 end_radius=self.end_radius 

119 ) 

120 # Run the analysis with step parameter 

121 hole.run( 

122 start=self.start, 

123 stop=self.stop, 

124 step=self.steps 

125 ) 

126 # Save the results to a CSV file 

127 all_frames = [] 

128 for frame in hole.results.profiles.keys(): 

129 rxn_coord = hole.results.profiles[frame].rxn_coord 

130 radius = hole.results.profiles[frame].radius 

131 df_frame = pd.DataFrame({'Frame': frame, 'Pore Coordinate': rxn_coord, 'Radius': radius}) 

132 all_frames.append(df_frame) 

133 # Concatenate all frames into a single DataFrame 

134 df_all_frames = pd.concat(all_frames, ignore_index=True) 

135 df_all_frames.to_csv(self.stage_io_dict["out"]["output_csv_path"], index=False) 

136 

137 hole.create_vmd_surface( 

138 self.stage_io_dict["out"]["output_hole_path"], 

139 dot_density=self.dot_density 

140 ) 

141 hole.delete_temporary_files() 

142 # move back to original directory 

143 os.chdir(cwd) 

144 # Copy files to host 

145 self.copy_to_host() 

146 # remove temporary folder(s) 

147 self.remove_tmp_files() 

148 

149 self.check_arguments(output_files_created=True, raise_exception=False) 

150 

151 return self.return_code 

152 

153 

154def mda_hole(input_top_path: str, 

155 input_traj_path: str, 

156 output_hole_path: str, 

157 output_csv_path: str, 

158 properties: dict = None, 

159 **kwargs) -> int: 

160 """Execute the :class:`MDAHole <mdanalysis_biobb.mda_hole.MDAHole>` class and 

161 execute the :meth:`launch() <mdanalysis_biobb.mda_hole.MDAHole.launch>` method.""" 

162 return MDAHole(**dict(locals())).launch() 

163 

164 

165mda_hole.__doc__ = MDAHole.__doc__ 

166main = MDAHole.get_main(mda_hole, "Analyze ion channel pores or transporter pathways.") 

167 

168 

169def display_hole(input_top_path: str, input_traj_path: str, 

170 output_hole_path: str = 'hole.vmd', 

171 frame: int = 0, opacity: float = 0.9): 

172 """ 

173 Visualize a channel using NGLView from a VMD file. 

174 

175 Args: 

176 input_top_path (str): Path to the input topology file. 

177 output_hole_path (str, optional): Path to the VMD file containing the channel data. Default is 'hole.vmd'. 

178 frame (int, optional): Frame index to visualize. Default is 0. 

179 opacity (float, optional): Opacity of the visualization. Default is 0.9. 

180 Returns: 

181 nglview.NGLWidget: NGLView widget for visualizing the channel. 

182 """ 

183 

184 try: 

185 import nglview as nv 

186 except ImportError: 

187 raise ImportError('Please install the nglview package to visualize the channel.') 

188 

189 # Read the VMD file and parse triangles 

190 with open(output_hole_path, 'r') as f: 

191 lines = f.readlines() 

192 

193 # Find lines with triangle coordinates 

194 trinorms = [] 

195 for i, line in enumerate(lines): 

196 if i > 3 and 'set triangle' in line: 

197 vmd_set = re.sub(r'set triangles\(\d+\)', '', line) # Remove set triangles(i) 

198 vmd_set = re.sub(r'\{(\s*-?\d[^\s]*)(\s*-?\d[^\s]*)(\s*-?\d[^}]*)\}', r'[\1,\2,\3]', vmd_set) # Convert { x y z } to [x,y,z] 

199 vmd_set = vmd_set.replace('{', '[').replace('}', ']') # Convert { to [ and } to ] 

200 vmd_set = re.sub(r'\]\s*\[', '], [', vmd_set) # Add commas between brackets 

201 vmd_set = eval(vmd_set.strip()) # Evaluate string as list 

202 # different hole colors 

203 trinorms.append(vmd_set) 

204 # Create a list of positions, colors, and normals 

205 colors = np.array([[1, 0, 0], # red 

206 [0, 1, 0], # green 

207 [0, 0, 1]]) # blue 

208 poss, cols, nors = [], [], [] 

209 for i, color in enumerate(colors): 

210 if len(trinorms[frame][i]) > 0: 

211 col_dat = np.array(trinorms[frame][i]) 

212 poss.append(col_dat[:, :3, :].flatten()) # 3 first elements are positions 

213 cols.append((np.zeros(col_dat.shape[0]*18).reshape(-1, 3) + color).flatten()) # 3 colors for each vertex 

214 nors.append(col_dat[:, 3:, :].flatten()) # 3 last elements are normals 

215 poss = np.concatenate(poss) 

216 cols = np.concatenate(cols) 

217 nors = np.concatenate(nors) 

218 # Create NGLView widget 

219 u = mda.Universe(input_top_path, input_traj_path) 

220 view = nv.show_mdanalysis(u) 

221 # view.clear_representations() 

222 mesh = ('mesh', poss, cols) 

223 view._add_shape([mesh], name='my_shape') 

224 view.update_representation(component=1, repr_index=0, opacity=opacity) 

225 return view 

226 

227 

228if __name__ == '__main__': 

229 main()