Coverage for biobb_mem/fatslim/fatslim_membranes.py: 53%
95 statements
« prev ^ index » next coverage.py v7.10.7, created at 2025-10-03 16:03 +0000
« prev ^ index » next coverage.py v7.10.7, created at 2025-10-03 16:03 +0000
1#!/usr/bin/env python3
3"""Module containing the FATSLiM Membranes class and the command line interface."""
4from biobb_common.generic.biobb_object import BiobbObject
5from biobb_common.tools.file_utils import launchlogger
6from biobb_mem.fatslim.common import ignore_no_box, move_output_file
7import MDAnalysis as mda
8import numpy as np
11class FatslimMembranes(BiobbObject):
12 """
13 | biobb_mem FatslimMembranes
14 | Wrapper of the `FATSLiM membranes <https://pythonhosted.org/fatslim/documentation/leaflets.html>`_ module for leaflet and membrane identification.
15 | FATSLiM is designed to provide efficient and robust analysis of physical parameters from MD trajectories, with a focus on processing large trajectory files quickly.
17 Args:
18 input_top_path (str): Path to the input topology file. File type: input. `Sample file <https://github.com/bioexcel/biobb_mem/raw/main/biobb_mem/test/data/A01JD/A01JD.pdb>`_. Accepted formats: tpr (edam:format_2333), gro (edam:format_2033), g96 (edam:format_2033), pdb (edam:format_1476), brk (edam:format_2033), ent (edam:format_1476).
19 input_traj_path (str) (Optional): Path to the GROMACS trajectory file. File type: input. `Sample file <https://github.com/bioexcel/biobb_mem/raw/main/biobb_mem/test/data/A01JD/A01JD.xtc>`_. Accepted formats: xtc (edam:format_3875), trr (edam:format_3910), cpt (edam:format_2333), gro (edam:format_2033), g96 (edam:format_2033), pdb (edam:format_1476), tng (edam:format_3876).
20 input_ndx_path (str) (Optional): Path to the input lipid headgroups index NDX file. File type: input. `Sample file <https://github.com/bioexcel/biobb_mem/raw/main/biobb_mem/test/data/A01JD/A01JD.ndx>`_. Accepted formats: ndx (edam:format_2033).
21 output_ndx_path (str): Path to the output index NDX file. File type: output. `Sample file <https://github.com/bioexcel/biobb_mem/raw/main/biobb_mem/test/reference/fatslim/leaflets.ndx>`_. Accepted formats: ndx (edam:format_2033).
22 properties (dic - Python dictionary object containing the tool parameters, not input/output files):
23 * **selection** (*str*) - ("not protein and element P") Alternative ot the NDX file for choosing the Headgroups used in the identification using MDAnalysis `selection language <https://docs.mdanalysis.org/stable/documentation_pages/selections.html>`_.
24 * **cutoff** (*float*) - (2) Cutoff distance (in nm) to be used when leaflet identification is performed.
25 * **begin_frame** (*int*) - (-1) First frame index to be used for analysis.
26 * **end_frame** (*int*) - (-1) Last frame index to be used for analysis.
27 * **ignore_no_box** (*bool*) - (False) Ignore the absence of box information in the topology. If the topology does not contain box information, the box will be set to the minimum and maximum positions of the atoms.
28 * **return_hydrogen** (*bool*) - (False) Include hydrogen atoms in the output index file.
29 * **binary_path** (*str*) - ("fatslim") Path to the fatslim executable binary.
30 * **remove_tmp** (*bool*) - (True) [WF property] Remove temporal files.
31 * **restart** (*bool*) - (False) [WF property] Do not execute if output files exist.
32 * **sandbox_path** (*str*) - ("./") [WF property] Parent path to the sandbox directory.
34 Examples:
35 This is a use example of how to use the building block from Python::
37 from biobb_mem.fatslim.fatslim_membranes import fatslim_membranes
38 prop = {
39 'selection': '(resname DPPC and name P8)',
40 'cutoff': 2.2
41 }
42 fatslim_membranes(input_top_path='/path/to/myTopology.tpr',
43 input_traj_path='/path/to/myTrajectory.xtc',
44 output_ndx_path='/path/to/newIndex.ndx',
45 properties=prop)
47 Info:
48 * wrapped_software:
49 * name: FATSLiM
50 * version: 0.2.2
51 * license: GNU
52 * ontology:
53 * name: EDAM
54 * schema: http://edamontology.org/EDAM.owl
56 """
58 def __init__(self, input_top_path, output_ndx_path, input_traj_path=None,
59 input_ndx_path=None, properties=None, **kwargs) -> None:
60 properties = properties or {}
62 # Call parent class constructor
63 super().__init__(properties)
64 self.locals_var_dict = locals().copy()
66 # Input/Output files
67 self.io_dict = {
68 "in": {"input_top_path": input_top_path,
69 "input_traj_path": input_traj_path,
70 "input_ndx_path": input_ndx_path
71 },
72 "out": {"output_ndx_path": output_ndx_path}
73 }
75 # Properties specific for BB
76 self.selection = properties.get('selection', "not protein and element P")
77 self.cutoff = properties.get('cutoff', 2)
78 self.begin_frame = properties.get('begin_frame', -1)
79 self.end_frame = properties.get('end_frame', -1)
80 self.ignore_no_box = properties.get('ignore_no_box', False)
81 self.return_hydrogen = properties.get('return_hydrogen', False)
82 self.binary_path = properties.get('binary_path', 'fatslim')
83 self.properties = properties
85 # Check the properties
86 self.check_properties(properties)
87 self.check_arguments()
89 @launchlogger
90 def launch(self) -> int:
91 """Execute the :class:`FatslimMembranes <fatslim.fatslim_membranes.FatslimMembranes>` object."""
93 # Setup Biobb
94 if self.check_restart():
95 return 0
96 self.stage_files()
98 # Create index file using MDAnalysis
99 u = mda.Universe(topology=self.stage_io_dict["in"]["input_top_path"],
100 coordinates=self.stage_io_dict["in"].get("input_traj_path"))
101 ignore_no_box(u, self.ignore_no_box, self.out_log, self.global_log)
103 # Build the index to select the atoms from the membrane
104 if self.stage_io_dict["in"].get('input_ndx_path', None):
105 tmp_ndx = self.stage_io_dict["in"]["input_ndx_path"]
106 else:
107 tmp_ndx = self.create_tmp_file('_headgroups.ndx')
108 with mda.selections.gromacs.SelectionWriter(tmp_ndx, mode='w') as ndx:
109 ndx.write(u.select_atoms(self.selection), name='headgroups')
111 if self.stage_io_dict["in"]["input_top_path"].endswith('gro'):
112 cfg = self.stage_io_dict["in"]["input_top_path"]
113 else:
114 # Convert topology .gro and add box dimensions if not available in the topology
115 cfg = self.create_tmp_file('_output.gro')
116 # Save as GRO file with box information
117 u.atoms.write(cfg)
119 tmp_out = self.create_tmp_file('_output.ndx')
120 # Build command
121 self.cmd = [
122 self.binary_path, "membranes",
123 "-n", tmp_ndx,
124 "-c", cfg,
125 "--output-index", tmp_out,
126 "--cutoff", str(self.cutoff),
127 "--begin-frame", str(self.begin_frame),
128 "--end-frame", str(self.end_frame)
129 ]
131 # Run Biobb block
132 self.run_biobb()
133 move_output_file(tmp_out, self.stage_io_dict["out"]["output_ndx_path"], self.out_log, self.global_log)
134 # Fatslim ignore H atoms so we add them manually
135 if self.return_hydrogen:
136 # Parse the atoms indices of the membrane without Hs
137 leaflet_groups = parse_index(self.stage_io_dict["out"]["output_ndx_path"])
138 with mda.selections.gromacs.SelectionWriter(self.stage_io_dict["out"]["output_ndx_path"], mode='w') as ndx:
139 for key, value in leaflet_groups.items():
140 # Select the residues using atom indexes
141 res_sele = set(u.atoms[np.array(value)-1].residues.resindices)
142 # Use the rexindex to select all the atoms of the residue
143 sele = f"resindex {' '.join(map(str, res_sele))}"
144 ndx.write(u.select_atoms(sele), name=key)
145 # Copy files to host
146 self.copy_to_host()
148 # Remove temporary files
149 self.remove_tmp_files()
150 self.check_arguments(output_files_created=True, raise_exception=False)
152 return self.return_code
155def fatslim_membranes(input_top_path: str, output_ndx_path: str, input_traj_path: str = None, input_ndx_path: str = None, properties: dict = None, **kwargs) -> int:
156 """Execute the :class:`FatslimMembranes <fatslim.fatslim_membranes.FatslimMembranes>` class and
157 execute the :meth:`launch() <fatslim.fatslim_membranes.FatslimMembranes.launch>` method."""
158 return FatslimMembranes(**dict(locals())).launch()
161fatslim_membranes.__doc__ = FatslimMembranes.__doc__
162main = FatslimMembranes.get_main(fatslim_membranes, "Calculates the density along an axis of a given cpptraj compatible trajectory.")
165def parse_index(ndx):
166 """
167 Parses a GROMACS index file (.ndx) to extract leaflet groups.
169 Args:
170 ndx (str): Path to the GROMACS index file (.ndx).
171 Returns:
172 dict: A dictionary where keys are group names for each leaflet in format "membrane_1_leaflet_1" and values are lists of integers representing atom indices starting from 1.
173 """
175 # Read the leaflet.ndx file
176 with open(ndx, 'r') as file:
177 leaflet_data = file.readlines()
179 # Initialize dictionaries to store leaflet groups
180 leaflet_groups = {}
181 current_group = None
183 # Parse the leaflet.ndx file
184 for line in leaflet_data:
185 line = line.strip()
186 if line.startswith('[') and line.endswith(']'):
187 current_group = line[1:-1].strip()
188 leaflet_groups[current_group] = []
189 elif current_group is not None:
190 leaflet_groups[current_group].extend(map(int, line.split()))
191 return leaflet_groups
194def display_fatslim(input_top_path: str, lipid_sel: str, input_traj_path: str = None, output_ndx_path="leaflets.ndx", leaflets=True,
195 colors=['blue', 'cyan', 'yellow', 'orange', 'purple', 'magenta'], non_mem_color='red'):
196 """
197 Visualize the leaflets of a membrane using NGLView. The lipids in the membrane are colored according to their leaflet. The ones not in the membrane are colored in red.
199 Args:
200 input_top_path (str): Path to the input topology file.
201 input_traj_path (str, optional): Path to the input trajectory file. Default is None.
202 output_ndx_path (str, optional): Path to the output index file containing leaflet information. Default is "leaflets.ndx".
203 leaflets (bool, optional): If True, visualize individual leaflets. If False, visualize entire membranes. Default is True.
204 colors (list of str, optional): List of colors to use for visualizing the leaflets or membranes. Default is ['blue', 'cyan', 'yellow', 'orange', 'purple', 'magenta'].
205 non_mem_color (str, optional): Color to use for visualizing lipids not in the membrane. Default is 'red'.
206 Returns:
207 nglview.NGLWidget: An NGLView widget displaying the membrane leaflets.
208 """
209 try:
210 import nglview as nv
211 except ImportError:
212 raise ImportError('Please install the nglview package to visualize the membrane/s.')
214 u = mda.Universe(topology=input_top_path,
215 coordinates=input_traj_path)
216 # Visualize the system with NGLView
217 view = nv.show_mdanalysis(u)
218 view.clear_representations()
220 leaflet_groups = parse_index(output_ndx_path)
221 n_mems = len(leaflet_groups.keys())//2
223 non_mem_resn = set(u.select_atoms(lipid_sel).residues.resnums)
224 for n in range(n_mems):
225 # Convert atoms list to resnums (nglview uses cannot use resindex)
226 top_resn = u.atoms[np.array(leaflet_groups[f'membrane_{n+1}_leaflet_1'])-1].residues.resnums
227 bot_resn = u.atoms[np.array(leaflet_groups[f'membrane_{n+1}_leaflet_2'])-1].residues.resnums
228 non_mem_resn -= set(top_resn)
229 non_mem_resn -= set(bot_resn)
230 if leaflets:
231 view.add_point(selection=", ".join(map(str, top_resn)), color=colors[n*2]) # lipids in top leaflet
232 view.add_point(selection=", ".join(map(str, bot_resn)), color=colors[n*2+1]) # lipids in bot leaflet
233 else:
234 mem_resn = np.concatenate((top_resn, bot_resn))
235 view.add_point(selection=", ".join(map(str, mem_resn)), color=colors[n*2]) # lipids in membrane
236 if len(non_mem_resn) > 0:
237 view.add_point(selection=", ".join(map(str, non_mem_resn)), color=non_mem_color) # lipids without membrane
238 return view
241if __name__ == '__main__':
242 main()