Coverage for biobb_mem/fatslim/fatslim_membranes.py: 53%
95 statements
« prev ^ index » next coverage.py v7.10.6, created at 2025-09-08 09:07 +0000
« prev ^ index » next coverage.py v7.10.6, created at 2025-09-08 09:07 +0000
1#!/usr/bin/env python3
3"""Module containing the FATSLiM Membranes class and the command line interface."""
4from biobb_common.generic.biobb_object import BiobbObject
5from biobb_common.tools.file_utils import launchlogger
6from biobb_mem.fatslim.common import ignore_no_box, move_output_file
7import MDAnalysis as mda
8import numpy as np
11class FatslimMembranes(BiobbObject):
12 """
13 | biobb_mem FatslimMembranes
14 | Wrapper of the `FATSLiM membranes <https://pythonhosted.org/fatslim/documentation/leaflets.html>`_ module for leaflet and membrane identification.
15 | FATSLiM is designed to provide efficient and robust analysis of physical parameters from MD trajectories, with a focus on processing large trajectory files quickly.
17 Args:
18 input_top_path (str): Path to the input topology file. File type: input. `Sample file <https://github.com/bioexcel/biobb_mem/raw/main/biobb_mem/test/data/A01JD/A01JD.pdb>`_. Accepted formats: tpr (edam:format_2333), gro (edam:format_2033), g96 (edam:format_2033), pdb (edam:format_1476), brk (edam:format_2033), ent (edam:format_1476).
19 input_traj_path (str) (Optional): Path to the GROMACS trajectory file. File type: input. `Sample file <https://github.com/bioexcel/biobb_mem/raw/main/biobb_mem/test/data/A01JD/A01JD.xtc>`_. Accepted formats: xtc (edam:format_3875), trr (edam:format_3910), cpt (edam:format_2333), gro (edam:format_2033), g96 (edam:format_2033), pdb (edam:format_1476), tng (edam:format_3876).
20 input_ndx_path (str) (Optional): Path to the input lipid headgroups index NDX file. File type: input. `Sample file <https://github.com/bioexcel/biobb_mem/raw/main/biobb_mem/test/data/A01JD/A01JD.ndx>`_. Accepted formats: ndx (edam:format_2033).
21 output_ndx_path (str): Path to the output index NDX file. File type: output. `Sample file <https://github.com/bioexcel/biobb_mem/raw/main/biobb_mem/test/reference/fatslim/leaflets.ndx>`_. Accepted formats: ndx (edam:format_2033).
22 properties (dic - Python dictionary object containing the tool parameters, not input/output files):
23 * **selection** (*str*) - ("not protein and element P") Alternative ot the NDX file for choosing the Headgroups used in the identification using MDAnalysis `selection language <https://docs.mdanalysis.org/stable/documentation_pages/selections.html>`_.
24 * **cutoff** (*float*) - (2) Cutoff distance (in nm) to be used when leaflet identification is performed.
25 * **begin_frame** (*int*) - (-1) First frame index to be used for analysis.
26 * **end_frame** (*int*) - (-1) Last frame index to be used for analysis.
27 * **ignore_no_box** (*bool*) - (False) Ignore the absence of box information in the topology. If the topology does not contain box information, the box will be set to the minimum and maximum positions of the atoms.
28 * **return_hydrogen** (*bool*) - (False) Include hydrogen atoms in the output index file.
29 * **binary_path** (*str*) - ("fatslim") Path to the fatslim executable binary.
30 * **remove_tmp** (*bool*) - (True) [WF property] Remove temporal files.
31 * **restart** (*bool*) - (False) [WF property] Do not execute if output files exist.
32 * **sandbox_path** (*str*) - ("./") [WF property] Parent path to the sandbox directory.
34 Examples:
35 This is a use example of how to use the building block from Python::
37 from biobb_mem.fatslim.fatslim_membranes import fatslim_membranes
38 prop = {
39 'selection': '(resname DPPC and name P8)',
40 'cutoff': 2.2
41 }
42 fatslim_membranes(input_top_path='/path/to/myTopology.tpr',
43 input_traj_path='/path/to/myTrajectory.xtc',
44 output_ndx_path='/path/to/newIndex.ndx',
45 properties=prop)
47 Info:
48 * wrapped_software:
49 * name: FATSLiM
50 * version: 0.2.2
51 * license: GNU
52 * ontology:
53 * name: EDAM
54 * schema: http://edamontology.org/EDAM.owl
56 """
58 def __init__(self, input_top_path, output_ndx_path, input_traj_path=None,
59 input_ndx_path=None, properties=None, **kwargs) -> None:
60 properties = properties or {}
62 # Call parent class constructor
63 super().__init__(properties)
64 self.locals_var_dict = locals().copy()
66 # Input/Output files
67 self.io_dict = {
68 "in": {"input_top_path": input_top_path,
69 "input_traj_path": input_traj_path,
70 "input_ndx_path": input_ndx_path
71 },
72 "out": {"output_ndx_path": output_ndx_path}
73 }
75 # Properties specific for BB
76 self.selection = properties.get('selection', "not protein and element P")
77 self.cutoff = properties.get('cutoff', 2)
78 self.begin_frame = properties.get('begin_frame', -1)
79 self.end_frame = properties.get('end_frame', -1)
80 self.ignore_no_box = properties.get('ignore_no_box', False)
81 self.return_hydrogen = properties.get('return_hydrogen', False)
82 self.binary_path = properties.get('binary_path', 'fatslim')
83 self.properties = properties
85 # Check the properties
86 self.check_properties(properties)
87 self.check_arguments()
89 @launchlogger
90 def launch(self) -> int:
91 """Execute the :class:`FatslimMembranes <fatslim.fatslim_membranes.FatslimMembranes>` object."""
93 # Setup Biobb
94 if self.check_restart():
95 return 0
96 self.stage_files()
98 # Create index file using MDAnalysis
99 u = mda.Universe(topology=self.stage_io_dict["in"]["input_top_path"],
100 coordinates=self.stage_io_dict["in"].get("input_traj_path"))
101 ignore_no_box(u, self.ignore_no_box, self.out_log, self.global_log)
103 # Build the index to select the atoms from the membrane
104 if self.stage_io_dict["in"].get('input_ndx_path', None):
105 tmp_ndx = self.stage_io_dict["in"]["input_ndx_path"]
106 else:
107 tmp_ndx = self.create_tmp_file('_headgroups.ndx')
108 with mda.selections.gromacs.SelectionWriter(tmp_ndx, mode='w') as ndx:
109 ndx.write(u.select_atoms(self.selection), name='headgroups')
111 if self.stage_io_dict["in"]["input_top_path"].endswith('gro'):
112 cfg = self.stage_io_dict["in"]["input_top_path"]
113 else:
114 # Convert topology .gro and add box dimensions if not available in the topology
115 cfg = self.create_tmp_file('_output.gro')
116 # Save as GRO file with box information
117 u.atoms.write(cfg)
119 tmp_out = self.create_tmp_file('_output.ndx')
120 # Build command
121 self.cmd = [
122 self.binary_path, "membranes",
123 "-n", tmp_ndx,
124 "-c", cfg,
125 "--output-index", tmp_out,
126 "--cutoff", str(self.cutoff),
127 "--begin-frame", str(self.begin_frame),
128 "--end-frame", str(self.end_frame)
129 ]
131 # Run Biobb block
132 self.run_biobb()
133 # Fatslim ignore H atoms so we add them manually
134 if self.return_hydrogen:
135 # Parse the atoms indices of the membrane without Hs
136 leaflet_groups = parse_index(tmp_out[:-4]+'_0000.ndx')
137 with mda.selections.gromacs.SelectionWriter(self.stage_io_dict["out"]["output_ndx_path"], mode='w') as ndx:
138 for key, value in leaflet_groups.items():
139 # Select the residues using atom indexes
140 res_sele = set(u.atoms[np.array(value)-1].residues.resindices)
141 # Use the rexindex to select all the atoms of the residue
142 sele = f"resindex {' '.join(map(str, res_sele))}"
143 ndx.write(u.select_atoms(sele), name=key)
144 else:
145 move_output_file(tmp_out, self.stage_io_dict["out"]["output_ndx_path"], self.out_log, self.global_log)
146 # Copy files to host
147 self.copy_to_host()
149 # Remove temporary files
150 self.remove_tmp_files()
151 self.check_arguments(output_files_created=True, raise_exception=False)
153 return self.return_code
156def fatslim_membranes(input_top_path: str, output_ndx_path: str, input_traj_path: str = None, input_ndx_path: str = None, properties: dict = None, **kwargs) -> int:
157 """Execute the :class:`FatslimMembranes <fatslim.fatslim_membranes.FatslimMembranes>` class and
158 execute the :meth:`launch() <fatslim.fatslim_membranes.FatslimMembranes.launch>` method."""
159 return FatslimMembranes(**dict(locals())).launch()
162fatslim_membranes.__doc__ = FatslimMembranes.__doc__
163main = FatslimMembranes.get_main(fatslim_membranes, "Calculates the density along an axis of a given cpptraj compatible trajectory.")
166def parse_index(ndx):
167 """
168 Parses a GROMACS index file (.ndx) to extract leaflet groups.
170 Args:
171 ndx (str): Path to the GROMACS index file (.ndx).
172 Returns:
173 dict: A dictionary where keys are group names for each leaflet in format "membrane_1_leaflet_1" and values are lists of integers representing atom indices starting from 1.
174 """
176 # Read the leaflet.ndx file
177 with open(ndx, 'r') as file:
178 leaflet_data = file.readlines()
180 # Initialize dictionaries to store leaflet groups
181 leaflet_groups = {}
182 current_group = None
184 # Parse the leaflet.ndx file
185 for line in leaflet_data:
186 line = line.strip()
187 if line.startswith('[') and line.endswith(']'):
188 current_group = line[1:-1].strip()
189 leaflet_groups[current_group] = []
190 elif current_group is not None:
191 leaflet_groups[current_group].extend(map(int, line.split()))
192 return leaflet_groups
195def display_fatslim(input_top_path: str, lipid_sel: str, input_traj_path: str = None, output_ndx_path="leaflets.ndx", leaflets=True,
196 colors=['blue', 'cyan', 'yellow', 'orange', 'purple', 'magenta'], non_mem_color='red'):
197 """
198 Visualize the leaflets of a membrane using NGLView. The lipids in the membrane are colored according to their leaflet. The ones not in the membrane are colored in red.
200 Args:
201 input_top_path (str): Path to the input topology file.
202 input_traj_path (str, optional): Path to the input trajectory file. Default is None.
203 output_ndx_path (str, optional): Path to the output index file containing leaflet information. Default is "leaflets.ndx".
204 leaflets (bool, optional): If True, visualize individual leaflets. If False, visualize entire membranes. Default is True.
205 colors (list of str, optional): List of colors to use for visualizing the leaflets or membranes. Default is ['blue', 'cyan', 'yellow', 'orange', 'purple', 'magenta'].
206 non_mem_color (str, optional): Color to use for visualizing lipids not in the membrane. Default is 'red'.
207 Returns:
208 nglview.NGLWidget: An NGLView widget displaying the membrane leaflets.
209 """
210 try:
211 import nglview as nv
212 except ImportError:
213 raise ImportError('Please install the nglview package to visualize the membrane/s.')
215 u = mda.Universe(topology=input_top_path,
216 coordinates=input_traj_path)
217 # Visualize the system with NGLView
218 view = nv.show_mdanalysis(u)
219 view.clear_representations()
221 leaflet_groups = parse_index(output_ndx_path)
222 n_mems = len(leaflet_groups.keys())//2
224 non_mem_resn = set(u.select_atoms(lipid_sel).residues.resnums)
225 for n in range(n_mems):
226 # Convert atoms list to resnums (nglview uses cannot use resindex)
227 top_resn = u.atoms[np.array(leaflet_groups[f'membrane_{n+1}_leaflet_1'])-1].residues.resnums
228 bot_resn = u.atoms[np.array(leaflet_groups[f'membrane_{n+1}_leaflet_2'])-1].residues.resnums
229 non_mem_resn -= set(top_resn)
230 non_mem_resn -= set(bot_resn)
231 if leaflets:
232 view.add_point(selection=", ".join(map(str, top_resn)), color=colors[n*2]) # lipids in top leaflet
233 view.add_point(selection=", ".join(map(str, bot_resn)), color=colors[n*2+1]) # lipids in bot leaflet
234 else:
235 mem_resn = np.concatenate((top_resn, bot_resn))
236 view.add_point(selection=", ".join(map(str, mem_resn)), color=colors[n*2]) # lipids in membrane
237 if len(non_mem_resn) > 0:
238 view.add_point(selection=", ".join(map(str, non_mem_resn)), color=non_mem_color) # lipids without membrane
239 return view
242if __name__ == '__main__':
243 main()