Coverage for biobb_ml/classification/k_neighbors_coefficient.py: 85%

124 statements  

« prev     ^ index     » next       coverage.py v7.6.1, created at 2024-10-03 14:57 +0000

1#!/usr/bin/env python3 

2 

3"""Module containing the KNeighborsCoefficient class and the command line interface.""" 

4import argparse 

5import pandas as pd 

6import numpy as np 

7import matplotlib.pyplot as plt 

8from biobb_common.generic.biobb_object import BiobbObject 

9from sklearn.preprocessing import StandardScaler 

10from sklearn.model_selection import train_test_split 

11from sklearn.metrics import classification_report, log_loss 

12from sklearn.neighbors import KNeighborsClassifier 

13from biobb_common.configuration import settings 

14from biobb_common.tools import file_utils as fu 

15from biobb_common.tools.file_utils import launchlogger 

16from biobb_ml.classification.common import check_input_path, check_output_path, getHeader, getIndependentVars, getIndependentVarsList, getTarget, getTargetValue, getWeight 

17 

18 

19class KNeighborsCoefficient(BiobbObject): 

20 """ 

21 | biobb_ml KNeighborsCoefficient 

22 | Wrapper of the scikit-learn KNeighborsClassifier method. 

23 | Trains and tests a given dataset and calculates the best K coefficient. Visit the `KNeighborsClassifier documentation page <https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html>`_ in the sklearn official website for further information. 

24 

25 Args: 

26 input_dataset_path (str): Path to the input dataset. File type: input. `Sample file <https://github.com/bioexcel/biobb_ml/raw/master/biobb_ml/test/data/classification/dataset_k_neighbors_coefficient.csv>`_. Accepted formats: csv (edam:format_3752). 

27 output_results_path (str): Path to the accuracy values list. File type: output. `Sample file <https://github.com/bioexcel/biobb_ml/raw/master/biobb_ml/test/reference/classification/ref_output_test_k_neighbors_coefficient.csv>`_. Accepted formats: csv (edam:format_3752). 

28 output_plot_path (str) (Optional): Path to the accuracy plot. File type: output. `Sample file <https://github.com/bioexcel/biobb_ml/raw/master/biobb_ml/test/reference/classification/ref_output_plot_k_neighbors_coefficient.png>`_. Accepted formats: png (edam:format_3603). 

29 properties (dic - Python dictionary object containing the tool parameters, not input/output files): 

30 * **independent_vars** (*list*) - (None) Independent variables or columns from your dataset you want to train. 

31 * **target** (*string*) - (None) Dependent variable or column from your dataset you want to predict. 

32 * **metric** (*string*) - ("minkowski") The distance metric to use for the tree. Values: euclidean (Computes the Euclidean distance between two 1-D arrays), manhattan (Compute the Manhattan distance), chebyshev (Compute the Chebyshev distance), minkowski (Compute the Minkowski distance between two 1-D arrays), wminkowski (Compute the weighted Minkowski distance between two 1-D arrays), seuclidean (Return the standardized Euclidean distance between two 1-D arrays), mahalanobi (Compute the Mahalanobis distance between two 1-D arrays). 

33 * **max_neighbors** (*int*) - (6) [1~100|1] Maximum number of neighbors to use by default for kneighbors queries. 

34 * **random_state_train_test** (*int*) - (5) [1~1000|1] Controls the shuffling applied to the data before applying the split. 

35 * **test_size** (*float*) - (0.2) [0~1|0.05] Represents the proportion of the dataset to include in the test split. It should be between 0.0 and 1.0. 

36 * **scale** (*bool*) - (False) Whether or not to scale the input dataset. 

37 * **remove_tmp** (*bool*) - (True) [WF property] Remove temporal files. 

38 * **restart** (*bool*) - (False) [WF property] Do not execute if output files exist. 

39 * **sandbox_path** (*str*) - ("./") [WF property] Parent path to the sandbox directory. 

40 

41 Examples: 

42 This is a use example of how to use the building block from Python:: 

43 

44 from biobb_ml.classification.k_neighbors_coefficient import k_neighbors_coefficient 

45 prop = { 

46 'independent_vars': { 

47 'columns': [ 'column1', 'column2', 'column3' ] 

48 }, 

49 'target': { 

50 'column': 'target' 

51 }, 

52 'max_neighbors': 6, 

53 'test_size': 0.2 

54 } 

55 k_neighbors_coefficient(input_dataset_path='/path/to/myDataset.csv', 

56 output_results_path='/path/to/newTable.csv', 

57 output_plot_path='/path/to/newPlot.png', 

58 properties=prop) 

59 

60 Info: 

61 * wrapped_software: 

62 * name: scikit-learn KNeighborsClassifier 

63 * version: >=0.24.2 

64 * license: BSD 3-Clause 

65 * ontology: 

66 * name: EDAM 

67 * schema: http://edamontology.org/EDAM.owl 

68 

69 """ 

70 

71 def __init__(self, input_dataset_path, output_results_path, 

72 output_plot_path=None, properties=None, **kwargs) -> None: 

73 properties = properties or {} 

74 

75 # Call parent class constructor 

76 super().__init__(properties) 

77 self.locals_var_dict = locals().copy() 

78 

79 # Input/Output files 

80 self.io_dict = { 

81 "in": {"input_dataset_path": input_dataset_path}, 

82 "out": {"output_results_path": output_results_path, "output_plot_path": output_plot_path} 

83 } 

84 

85 # Properties specific for BB 

86 self.independent_vars = properties.get('independent_vars', {}) 

87 self.target = properties.get('target', {}) 

88 self.weight = properties.get('weight', {}) 

89 self.metric = properties.get('metric', 'minkowski') 

90 self.max_neighbors = properties.get('max_neighbors', 6) 

91 self.random_state_train_test = properties.get('random_state_train_test', 5) 

92 self.test_size = properties.get('test_size', 0.2) 

93 self.scale = properties.get('scale', False) 

94 self.properties = properties 

95 

96 # Check the properties 

97 self.check_properties(properties) 

98 self.check_arguments() 

99 

100 def check_data_params(self, out_log, err_log): 

101 """ Checks all the input/output paths and parameters """ 

102 self.io_dict["in"]["input_dataset_path"] = check_input_path(self.io_dict["in"]["input_dataset_path"], "input_dataset_path", out_log, self.__class__.__name__) 

103 self.io_dict["out"]["output_results_path"] = check_output_path(self.io_dict["out"]["output_results_path"], "output_results_path", False, out_log, self.__class__.__name__) 

104 if self.io_dict["out"]["output_plot_path"]: 

105 self.io_dict["out"]["output_plot_path"] = check_output_path(self.io_dict["out"]["output_plot_path"], "output_plot_path", True, out_log, self.__class__.__name__) 

106 

107 @launchlogger 

108 def launch(self) -> int: 

109 """Execute the :class:`KNeighborsCoefficient <classification.k_neighbors_coefficient.KNeighborsCoefficient>` classification.k_neighbors_coefficient.KNeighborsCoefficient object.""" 

110 

111 # check input/output paths and parameters 

112 self.check_data_params(self.out_log, self.err_log) 

113 

114 # Setup Biobb 

115 if self.check_restart(): 

116 return 0 

117 self.stage_files() 

118 

119 # load dataset 

120 fu.log('Getting dataset from %s' % self.io_dict["in"]["input_dataset_path"], self.out_log, self.global_log) 

121 if 'columns' in self.independent_vars: 

122 labels = getHeader(self.io_dict["in"]["input_dataset_path"]) 

123 skiprows = 1 

124 else: 

125 labels = None 

126 skiprows = None 

127 data = pd.read_csv(self.io_dict["in"]["input_dataset_path"], header=None, sep="\\s+|;|:|,|\t", engine="python", skiprows=skiprows, names=labels) 

128 

129 # declare inputs, targets and weights 

130 # the inputs are all the independent variables 

131 X = getIndependentVars(self.independent_vars, data, self.out_log, self.__class__.__name__) 

132 fu.log('Independent variables: [%s]' % (getIndependentVarsList(self.independent_vars)), self.out_log, self.global_log) 

133 # target 

134 y = getTarget(self.target, data, self.out_log, self.__class__.__name__) 

135 fu.log('Target: %s' % (getTargetValue(self.target)), self.out_log, self.global_log) 

136 # weights 

137 if self.weight: 

138 w = getWeight(self.weight, data, self.out_log, self.__class__.__name__) 

139 fu.log('Weight column provided', self.out_log, self.global_log) 

140 

141 # train / test split 

142 fu.log('Creating train and test sets', self.out_log, self.global_log) 

143 arrays_sets = (X, y) 

144 # if user provide weights 

145 if self.weight: 

146 arrays_sets = arrays_sets + (w,) 

147 X_train, X_test, y_train, y_test, w_train, w_test = train_test_split(*arrays_sets, test_size=self.test_size, random_state=self.random_state_train_test) 

148 else: 

149 X_train, X_test, y_train, y_test = train_test_split(*arrays_sets, test_size=self.test_size, random_state=self.random_state_train_test) 

150 

151 # scale dataset 

152 if self.scale: 

153 fu.log('Scaling dataset', self.out_log, self.global_log) 

154 scaler = StandardScaler() 

155 X_train = scaler.fit_transform(X_train) 

156 

157 # training and getting accuracy for each K 

158 fu.log('Training dataset applying k neighbors classification from 1 to %d n_neighbors' % self.max_neighbors, self.out_log, self.global_log) 

159 neighbors = np.arange(1, self.max_neighbors + 1) 

160 train_accuracy = np.empty(len(neighbors)) 

161 test_accuracy = np.empty(len(neighbors)) 

162 std_acc = np.zeros((self.max_neighbors)) 

163 

164 # scale dataset 

165 if self.scale: 

166 X_test = scaler.fit_transform(X_test) 

167 

168 for i, k in enumerate(neighbors): 

169 # Setup a knn classifier with k neighbors 

170 model = KNeighborsClassifier(n_neighbors=k) 

171 # Fit the model 

172 arrays_fit = (X_train, y_train) 

173 # if user provide weights 

174 if self.weight: 

175 arrays_fit = arrays_fit + (w_train,) 

176 model.fit(*arrays_fit) 

177 # Compute accuracy on the training set 

178 train_accuracy[i] = model.score(X_train, y_train) 

179 # Compute accuracy on the test set 

180 test_accuracy[i] = model.score(X_test, y_test) 

181 # deviation 

182 yhat_test = model.predict(X_test) 

183 std_acc[i - 1] = np.std(yhat_test == y_test) / np.sqrt(yhat_test.shape[0]) 

184 

185 # best K / best accuracy 

186 best_k = test_accuracy.argmax() + 1 

187 best_accuracy = test_accuracy.max() 

188 

189 # accuracy table 

190 test_table_accuracy = pd.DataFrame(data={'K': np.arange(1, self.max_neighbors + 1), 'accuracy': test_accuracy}) 

191 fu.log('Calculating accuracy for each K\n\nACCURACY\n\n%s\n' % test_table_accuracy.to_string(index=False), self.out_log, self.global_log) 

192 

193 # classification report 

194 cr_test = classification_report(y_test, model.predict(X_test)) 

195 # log loss 

196 yhat_prob = model.predict_proba(X_test) 

197 l_loss = log_loss(y_test, yhat_prob) 

198 fu.log('Calculating report for testing dataset and best K = %d | accuracy = %.3f\n\nCLASSIFICATION REPORT\n\n%s\nLog loss: %.3f\n' % (best_k, best_accuracy, cr_test, l_loss), self.out_log, self.global_log) 

199 

200 fu.log('Saving results to %s' % self.io_dict["out"]["output_results_path"], self.out_log, self.global_log) 

201 test_table_accuracy.to_csv(self.io_dict["out"]["output_results_path"], index=False, header=True, float_format='%.3f') 

202 

203 # accuracy plot 

204 if self.io_dict["out"]["output_plot_path"]: 

205 fu.log('Saving accuracy plot to %s' % self.io_dict["out"]["output_plot_path"], self.out_log, self.global_log) 

206 plt.title('k-NN Varying number of neighbors') 

207 plt.fill_between(range(1, self.max_neighbors + 1), test_accuracy - std_acc, test_accuracy + std_acc, alpha=0.10) 

208 plt.plot(neighbors, train_accuracy) 

209 plt.plot(neighbors, test_accuracy) 

210 plt.axvline(x=best_k, c='red') 

211 plt.legend(('Training Accuracy', 'Testing accuracy', 'Best K', '+/- 3xstd')) 

212 plt.xlabel('Number of neighbors') 

213 plt.ylabel('Accuracy') 

214 plt.savefig(self.io_dict["out"]["output_plot_path"], dpi=150) 

215 plt.tight_layout() 

216 

217 # Copy files to host 

218 self.copy_to_host() 

219 

220 self.tmp_files.extend([ 

221 self.stage_io_dict.get("unique_dir") 

222 ]) 

223 self.remove_tmp_files() 

224 

225 self.check_arguments(output_files_created=True, raise_exception=False) 

226 

227 return 0 

228 

229 

230def k_neighbors_coefficient(input_dataset_path: str, output_results_path: str, output_plot_path: str = None, properties: dict = None, **kwargs) -> int: 

231 """Execute the :class:`KNeighborsCoefficient <classification.k_neighbors_coefficient.KNeighborsCoefficient>` class and 

232 execute the :meth:`launch() <classification.k_neighbors_coefficient.KNeighborsCoefficient.launch>` method.""" 

233 

234 return KNeighborsCoefficient(input_dataset_path=input_dataset_path, 

235 output_results_path=output_results_path, 

236 output_plot_path=output_plot_path, 

237 properties=properties, **kwargs).launch() 

238 

239 

240def main(): 

241 """Command line execution of this building block. Please check the command line documentation.""" 

242 parser = argparse.ArgumentParser(description="Wrapper of the scikit-learn KNeighborsClassifier method. ", formatter_class=lambda prog: argparse.RawTextHelpFormatter(prog, width=99999)) 

243 parser.add_argument('--config', required=False, help='Configuration file') 

244 

245 # Specific args of each building block 

246 required_args = parser.add_argument_group('required arguments') 

247 required_args.add_argument('--input_dataset_path', required=True, help='Path to the input dataset. Accepted formats: csv.') 

248 required_args.add_argument('--output_results_path', required=True, help='Path to the accuracy values list. Accepted formats: csv.') 

249 parser.add_argument('--output_plot_path', required=False, help='Path to the accuracy plot. Accepted formats: png.') 

250 

251 args = parser.parse_args() 

252 args.config = args.config or "{}" 

253 properties = settings.ConfReader(config=args.config).get_prop_dic() 

254 

255 # Specific call of each building block 

256 k_neighbors_coefficient(input_dataset_path=args.input_dataset_path, 

257 output_results_path=args.output_results_path, 

258 output_plot_path=args.output_plot_path, 

259 properties=properties) 

260 

261 

262if __name__ == '__main__': 

263 main()