Coverage for biobb_ml/utils/correlation_matrix.py: 74%
74 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-10-03 14:57 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-10-03 14:57 +0000
1#!/usr/bin/env python3
3"""Module containing the CorrelationMatrix class and the command line interface."""
4import argparse
5import pandas as pd
6import matplotlib.pyplot as plt
7import seaborn as sns
8from biobb_common.generic.biobb_object import BiobbObject
9from biobb_common.configuration import settings
10from biobb_common.tools import file_utils as fu
11from biobb_common.tools.file_utils import launchlogger
12from biobb_ml.utils.common import check_input_path, check_output_path, getHeader, getIndependentVars
15class CorrelationMatrix(BiobbObject):
16 """
17 | biobb_ml CorrelationMatrix
18 | Generates a correlation matrix from a given dataset.
20 Args:
21 input_dataset_path (str): Path to the input dataset. File type: input. `Sample file <https://github.com/bioexcel/biobb_ml/raw/master/biobb_ml/test/data/utils/dataset_correlation_matrix.csv>`_. Accepted formats: csv (edam:format_3752).
22 output_plot_path (str): Path to the correlation matrix plot. File type: output. `Sample file <https://github.com/bioexcel/biobb_ml/raw/master/biobb_ml/test/reference/utils/ref_output_plot_correlation_matrix.png>`_. Accepted formats: png (edam:format_3603).
23 properties (dic):
24 * **features** (*dict*) - ({}) Independent variables or columns from your dataset you want to compare. You can specify either a list of columns names from your input dataset, a list of columns indexes or a range of columns indexes. Formats: { "columns": ["column1", "column2"] } or { "indexes": [0, 2, 3, 10, 11, 17] } or { "range": [[0, 20], [50, 102]] }. In case of mulitple formats, the first one will be picked.
25 * **remove_tmp** (*bool*) - (True) [WF property] Remove temporal files.
26 * **restart** (*bool*) - (False) [WF property] Do not execute if output files exist.
27 * **sandbox_path** (*str*) - ("./") [WF property] Parent path to the sandbox directory.
29 Examples:
30 This is a use example of how to use the building block from Python::
32 from biobb_ml.utils.correlation_matrix import correlation_matrix
33 prop = {
34 'features': {
35 'columns': [ 'column1', 'column2', 'column3' ]
36 }
37 }
38 correlation_matrix(input_dataset_path='/path/to/myDataset.csv',
39 output_plot_path='/path/to/newPlot.png',
40 properties=prop)
42 Info:
43 * wrapped_software:
44 * name: In house
45 * license: Apache-2.0
46 * ontology:
47 * name: EDAM
48 * schema: http://edamontology.org/EDAM.owl
50 """
52 def __init__(self, input_dataset_path, output_plot_path,
53 properties=None, **kwargs) -> None:
54 properties = properties or {}
56 # Call parent class constructor
57 super().__init__(properties)
58 self.locals_var_dict = locals().copy()
60 # Input/Output files
61 self.io_dict = {
62 "in": {"input_dataset_path": input_dataset_path},
63 "out": {"output_plot_path": output_plot_path}
64 }
66 # Properties specific for BB
67 self.features = properties.get('features', {})
68 self.properties = properties
70 # Check the properties
71 self.check_properties(properties)
72 self.check_arguments()
74 def check_data_params(self, out_log, err_log):
75 """ Checks all the input/output paths and parameters """
76 self.io_dict["in"]["input_dataset_path"] = check_input_path(self.io_dict["in"]["input_dataset_path"], "input_dataset_path", out_log, self.__class__.__name__)
77 self.io_dict["out"]["output_plot_path"] = check_output_path(self.io_dict["out"]["output_plot_path"], "output_plot_path", False, out_log, self.__class__.__name__)
79 @launchlogger
80 def launch(self) -> int:
81 """Execute the :class:`CorrelationMatrix <utils.correlation_matrix.CorrelationMatrix>` utils.correlation_matrix.CorrelationMatrix object."""
83 # check input/output paths and parameters
84 self.check_data_params(self.out_log, self.err_log)
86 # Setup Biobb
87 if self.check_restart():
88 return 0
89 self.stage_files()
91 # load dataset
92 fu.log('Getting dataset from %s' % self.io_dict["in"]["input_dataset_path"], self.out_log, self.global_log)
93 if 'columns' in self.features:
94 labels = getHeader(self.io_dict["in"]["input_dataset_path"])
95 skiprows = 1
96 else:
97 labels = None
98 skiprows = None
99 data = pd.read_csv(self.io_dict["in"]["input_dataset_path"], header=None, sep="\\s+|;|:|,|\t", engine="python", skiprows=skiprows, names=labels)
101 if self.features:
102 data = getIndependentVars(self.features, data, self.out_log, self.__class__.__name__)
104 fu.log('Parsing dataset', self.out_log, self.global_log)
105 if data.shape[1] < 10:
106 s = None
107 fs = 12
108 elif data.shape[1] >= 10 and data.shape[1] < 20:
109 s = (12, 12)
110 fs = 9
111 elif data.shape[1] >= 20:
112 s = (16, 16)
113 fs = 7
115 f, ax = plt.subplots(figsize=s)
116 corr = data.corr()
117 sns.heatmap(round(corr, 2), annot=True, ax=ax, cmap='Blues', fmt='.2f', square=True, annot_kws={"fontsize": fs})
118 f.subplots_adjust(top=0.93)
119 f.suptitle('Attributes Correlation Matrix', fontsize=14)
120 plt.tight_layout(rect=[0, 0.03, 1, 0.95])
122 plt.savefig(self.io_dict["out"]["output_plot_path"], dpi=150)
123 fu.log('Saving Correlation Matrix Plot to %s' % self.io_dict["out"]["output_plot_path"], self.out_log, self.global_log)
125 # Copy files to host
126 self.copy_to_host()
128 self.tmp_files.extend([
129 self.stage_io_dict.get("unique_dir")
130 ])
131 self.remove_tmp_files()
133 self.check_arguments(output_files_created=True, raise_exception=False)
135 return 0
138def correlation_matrix(input_dataset_path: str, output_plot_path: str, properties: dict = None, **kwargs) -> int:
139 """Execute the :class:`CorrelationMatrix <utils.correlation_matrix.CorrelationMatrix>` class and
140 execute the :meth:`launch() <utils.correlation_matrix.CorrelationMatrix.launch>` method."""
142 return CorrelationMatrix(input_dataset_path=input_dataset_path,
143 output_plot_path=output_plot_path,
144 properties=properties, **kwargs).launch()
147def main():
148 """Command line execution of this building block. Please check the command line documentation."""
149 parser = argparse.ArgumentParser(description="Generates a correlation matrix from a given dataset", formatter_class=lambda prog: argparse.RawTextHelpFormatter(prog, width=99999))
150 parser.add_argument('--config', required=False, help='Configuration file')
152 # Specific args of each building block
153 required_args = parser.add_argument_group('required arguments')
154 required_args.add_argument('--input_dataset_path', required=True, help='Path to the input dataset. Accepted formats: csv.')
155 required_args.add_argument('--output_plot_path', required=True, help='Path to the correlation matrix plot. Accepted formats: png.')
157 args = parser.parse_args()
158 args.config = args.config or "{}"
159 properties = settings.ConfReader(config=args.config).get_prop_dic()
161 # Specific call of each building block
162 correlation_matrix(input_dataset_path=args.input_dataset_path,
163 output_plot_path=args.output_plot_path,
164 properties=properties)
167if __name__ == '__main__':
168 main()