Coverage for biobb_ml/utils/scale_columns.py: 78%
68 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-10-03 14:57 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-10-03 14:57 +0000
1#!/usr/bin/env python3
3"""Module containing the ScaleColumns class and the command line interface."""
4import argparse
5import pandas as pd
6from biobb_common.generic.biobb_object import BiobbObject
7from sklearn.preprocessing import MinMaxScaler
8from biobb_common.configuration import settings
9from biobb_common.tools import file_utils as fu
10from biobb_common.tools.file_utils import launchlogger
11from biobb_ml.utils.common import check_input_path, check_output_path, getHeader, getIndependentVarsList, getTargetsList
14class ScaleColumns(BiobbObject):
15 """
16 | biobb_ml ScaleColumns
17 | Scales columns from a given dataset.
19 Args:
20 input_dataset_path (str): Path to the input dataset. File type: input. `Sample file <https://github.com/bioexcel/biobb_ml/raw/master/biobb_ml/test/data/utils/dataset_scale.csv>`_. Accepted formats: csv (edam:format_3752).
21 output_dataset_path (str): Path to the output dataset. File type: output. `Sample file <https://github.com/bioexcel/biobb_ml/raw/master/biobb_ml/test/reference/utils/ref_output_scale.csv>`_. Accepted formats: csv (edam:format_3752).
22 properties (dic):
23 * **targets** (*dict*) - ({}) Independent variables or columns from your dataset you want to scale. You can specify either a list of columns names from your input dataset, a list of columns indexes or a range of columns indexes. Formats: { "columns": ["column1", "column2"] } or { "indexes": [0, 2, 3, 10, 11, 17] } or { "range": [[0, 20], [50, 102]] }. In case of mulitple formats, the first one will be picked.
24 * **remove_tmp** (*bool*) - (True) [WF property] Remove temporal files.
25 * **restart** (*bool*) - (False) [WF property] Do not execute if output files exist.
26 * **sandbox_path** (*str*) - ("./") [WF property] Parent path to the sandbox directory.
28 Examples:
29 This is a use example of how to use the building block from Python::
31 from biobb_ml.utils.scale_columns import scale_columns
32 prop = {
33 'targets': {
34 'columns': [ 'column1', 'column2', 'column3' ]
35 }
36 }
37 scale_columns(input_dataset_path='/path/to/myDataset.csv',
38 output_dataset_path='/path/to/newDataset.csv',
39 properties=prop)
41 Info:
42 * wrapped_software:
43 * name: In house
44 * license: Apache-2.0
45 * ontology:
46 * name: EDAM
47 * schema: http://edamontology.org/EDAM.owl
49 """
51 def __init__(self, input_dataset_path, output_dataset_path,
52 properties=None, **kwargs) -> None:
53 properties = properties or {}
55 # Call parent class constructor
56 super().__init__(properties)
57 self.locals_var_dict = locals().copy()
59 # Input/Output files
60 self.io_dict = {
61 "in": {"input_dataset_path": input_dataset_path},
62 "out": {"output_dataset_path": output_dataset_path}
63 }
65 # Properties specific for BB
66 self.targets = properties.get('targets', {})
67 self.properties = properties
69 # Check the properties
70 self.check_properties(properties)
71 self.check_arguments()
73 def check_data_params(self, out_log, err_log):
74 """ Checks all the input/output paths and parameters """
75 self.io_dict["in"]["input_dataset_path"] = check_input_path(self.io_dict["in"]["input_dataset_path"], "input_dataset_path", out_log, self.__class__.__name__)
76 self.io_dict["out"]["output_dataset_path"] = check_output_path(self.io_dict["out"]["output_dataset_path"], "output_dataset_path", False, out_log, self.__class__.__name__)
78 @launchlogger
79 def launch(self) -> int:
80 """Execute the :class:`ScaleColumns <utils.scale_columns.ScaleColumns>` utils.scale_columns.ScaleColumns object."""
82 # check input/output paths and parameters
83 self.check_data_params(self.out_log, self.err_log)
85 # Setup Biobb
86 if self.check_restart():
87 return 0
88 self.stage_files()
90 # load dataset
91 fu.log('Getting dataset from %s' % self.io_dict["in"]["input_dataset_path"], self.out_log, self.global_log)
92 if 'columns' in self.targets:
93 labels = getHeader(self.io_dict["in"]["input_dataset_path"])
94 skiprows = 1
95 header = 0
96 else:
97 labels = None
98 skiprows = None
99 header = None
100 data = pd.read_csv(self.io_dict["in"]["input_dataset_path"], header=None, sep="\\s+|;|:|,|\t", engine="python", skiprows=skiprows, names=labels)
102 targets = getTargetsList(self.targets, 'scale', self.out_log, self.__class__.__name__)
104 fu.log('Scaling [%s] columns from dataset' % getIndependentVarsList(self.targets), self.out_log, self.global_log)
105 if not self.targets:
106 df_scaled = data
107 else:
108 df_scaled = (data[targets])
110 scaler = MinMaxScaler()
112 df_scaled = pd.DataFrame(scaler.fit_transform(df_scaled))
114 data[targets] = df_scaled
116 hdr = False
117 if header == 0:
118 hdr = True
119 fu.log('Saving dataset to %s' % self.io_dict["out"]["output_dataset_path"], self.out_log, self.global_log)
120 data.to_csv(self.io_dict["out"]["output_dataset_path"], index=False, header=hdr)
122 # Copy files to host
123 self.copy_to_host()
125 self.tmp_files.extend([
126 self.stage_io_dict.get("unique_dir")
127 ])
128 self.remove_tmp_files()
130 self.check_arguments(output_files_created=True, raise_exception=False)
132 return 0
135def scale_columns(input_dataset_path: str, output_dataset_path: str, properties: dict = None, **kwargs) -> int:
136 """Execute the :class:`ScaleColumns <utils.scale_columns.ScaleColumns>` class and
137 execute the :meth:`launch() <utils.scale_columns.ScaleColumns.launch>` method."""
139 return ScaleColumns(input_dataset_path=input_dataset_path,
140 output_dataset_path=output_dataset_path,
141 properties=properties, **kwargs).launch()
144def main():
145 """Command line execution of this building block. Please check the command line documentation."""
146 parser = argparse.ArgumentParser(description="Scales columns from a given dataset", formatter_class=lambda prog: argparse.RawTextHelpFormatter(prog, width=99999))
147 parser.add_argument('--config', required=False, help='Configuration file')
149 # Specific args of each building block
150 required_args = parser.add_argument_group('required arguments')
151 required_args.add_argument('--input_dataset_path', required=True, help='Path to the input dataset. Accepted formats: csv.')
152 required_args.add_argument('--output_dataset_path', required=True, help='Path to the output dataset. Accepted formats: csv.')
154 args = parser.parse_args()
155 args.config = args.config or "{}"
156 properties = settings.ConfReader(config=args.config).get_prop_dic()
158 # Specific call of each building block
159 scale_columns(input_dataset_path=args.input_dataset_path,
160 output_dataset_path=args.output_dataset_path,
161 properties=properties)
164if __name__ == '__main__':
165 main()