Coverage for biobb_ml/clustering/common.py: 81%

264 statements  

« prev     ^ index     » next       coverage.py v7.6.1, created at 2024-10-03 14:57 +0000

1""" Common functions for package biobb_analysis.ambertools """ 

2from pathlib import Path, PurePath 

3import matplotlib.pyplot as plt 

4from matplotlib.lines import Line2D 

5import csv 

6import re 

7import numpy as np 

8import pandas as pd 

9import seaborn as sns 

10from sklearn.neighbors import NearestNeighbors 

11from sklearn.cluster import KMeans 

12from sklearn.cluster import SpectralClustering 

13from sklearn.cluster import AgglomerativeClustering 

14from sklearn.metrics import silhouette_score 

15from random import sample 

16from math import isnan 

17from biobb_common.tools import file_utils as fu 

18from warnings import simplefilter 

19# ignore all future warnings 

20simplefilter(action='ignore', category=FutureWarning) 

21sns.set() 

22 

23 

24# CHECK PARAMETERS 

25 

26def check_input_path(path, argument, out_log, classname): 

27 """ Checks input file """ 

28 if not Path(path).exists(): 

29 fu.log(classname + ': Unexisting %s file, exiting' % argument, out_log) 

30 raise SystemExit(classname + ': Unexisting %s file' % argument) 

31 file_extension = PurePath(path).suffix 

32 if not is_valid_file(file_extension[1:], argument): 

33 fu.log(classname + ': Format %s in %s file is not compatible' % (file_extension[1:], argument), out_log) 

34 raise SystemExit(classname + ': Format %s in %s file is not compatible' % (file_extension[1:], argument)) 

35 return path 

36 

37 

38def check_output_path(path, argument, optional, out_log, classname): 

39 """ Checks output file """ 

40 if optional and not path: 

41 return None 

42 if PurePath(path).parent and not Path(PurePath(path).parent).exists(): 

43 fu.log(classname + ': Unexisting %s folder, exiting' % argument, out_log) 

44 raise SystemExit(classname + ': Unexisting %s folder' % argument) 

45 file_extension = PurePath(path).suffix 

46 if not is_valid_file(file_extension[1:], argument): 

47 fu.log(classname + ': Format %s in %s file is not compatible' % (file_extension[1:], argument), out_log) 

48 raise SystemExit(classname + ': Format %s in %s file is not compatible' % (file_extension[1:], argument)) 

49 return path 

50 

51 

52def is_valid_file(ext, argument): 

53 """ Checks if file format is compatible """ 

54 formats = { 

55 'input_dataset_path': ['csv'], 

56 'output_model_path': ['pkl'], 

57 'input_model_path': ['pkl'], 

58 'output_results_path': ['csv'], 

59 'output_plot_path': ['png'] 

60 } 

61 return ext in formats[argument] 

62 

63 

64def check_mandatory_property(property, name, out_log, classname): 

65 if not property: 

66 fu.log(classname + ': Unexisting %s property, exiting' % name, out_log) 

67 raise SystemExit(classname + ': Unexisting %s property' % name) 

68 return property 

69 

70 

71# UTILITIES 

72 

73def get_list_of_predictors(predictions): 

74 p = [] 

75 for obj in predictions: 

76 a = [] 

77 for k, v in obj.items(): 

78 a.append(v) 

79 p.append(a) 

80 return p 

81 

82 

83def get_keys_of_predictors(predictions): 

84 p = [] 

85 for obj in predictions[0]: 

86 p.append(obj) 

87 return p 

88 

89 

90# get best K in WCSS plot (getting elbow point) 

91def get_best_K(wcss): 

92 curve = wcss 

93 nPoints = len(curve) 

94 allCoord = np.vstack((range(nPoints), curve)).T 

95 np.array([range(nPoints), curve]) 

96 firstPoint = allCoord[0] 

97 lineVec = allCoord[-1] - allCoord[0] 

98 lineVecNorm = lineVec / np.sqrt(np.sum(lineVec**2)) 

99 vecFromFirst = allCoord - firstPoint 

100 scalarProduct = np.sum(vecFromFirst * np.tile(lineVecNorm, (nPoints, 1)), axis=1) 

101 vecFromFirstParallel = np.outer(scalarProduct, lineVecNorm) 

102 vecToLine = vecFromFirst - vecFromFirstParallel 

103 distToLine = np.sqrt(np.sum(vecToLine ** 2, axis=1)) 

104 idxOfBestPoint = np.argmax(distToLine) 

105 

106 return idxOfBestPoint + 1, np.argmax(distToLine) 

107 

108 

109# hopkins test 

110# https://matevzkunaver.wordpress.com/2017/06/20/hopkins-test-for-cluster-tendency/ 

111def hopkins(X): 

112 d = X.shape[1] 

113 # d = len(vars) # columns 

114 n = len(X) # rows 

115 m = int(0.1 * n) # heuristic from article [1] 

116 nbrs = NearestNeighbors(n_neighbors=1).fit(X.values) 

117 

118 rand_X = sample(range(0, n, 1), m) 

119 

120 ujd = [] 

121 wjd = [] 

122 for j in range(0, m): 

123 u_dist, _ = nbrs.kneighbors(np.random.uniform(np.amin(X, axis=0), np.amax(X, axis=0), d).reshape(1, -1), 2, return_distance=True) 

124 ujd.append(u_dist[0][1]) 

125 w_dist, _ = nbrs.kneighbors(X.iloc[rand_X[j]].values.reshape(1, -1), 2, return_distance=True) 

126 wjd.append(w_dist[0][1]) 

127 

128 H = sum(ujd) / (sum(ujd) + sum(wjd)) 

129 if isnan(H): 

130 print(ujd, wjd) 

131 H = 0 

132 

133 return H 

134 

135 

136# compute elbow 

137def getWCSS(method, max_clusters, t_predictors): 

138 wcss = [] 

139 for i in range(1, max_clusters + 1): 

140 if method == 'kmeans': 

141 clusterer = KMeans(i) 

142 elif method == 'agglomerative': 

143 clusterer = AgglomerativeClustering(n_clusters=i, linkage="average") 

144 clusterer.fit(t_predictors) 

145 wcss_iter = clusterer.inertia_ 

146 wcss.append(wcss_iter) 

147 

148 return wcss 

149 

150 

151# compute gap 

152# https://anaconda.org/milesgranger/gap-statistic/notebook 

153def getGap(method, data, nrefs=3, maxClusters=15): 

154 """ 

155 Calculates KMeans optimal K using Gap Statistic from Tibshirani, Walther, Hastie 

156 Params: 

157 data: ndarry of shape (n_samples, n_features) 

158 nrefs: number of sample reference datasets to create 

159 maxClusters: Maximum number of clusters to test for 

160 Returns: (gaps, optimalK) 

161 """ 

162 gaps = np.zeros((len(range(1, maxClusters)),)) 

163 resultsdf = pd.DataFrame({'cluster': [], 'gap': []}) 

164 for gap_index, k in enumerate(range(1, maxClusters)): 

165 

166 # Holder for reference dispersion results 

167 refDisps = np.zeros(nrefs) 

168 

169 # For n references, generate random sample and perform kmeans getting resulting dispersion of each loop 

170 for i in range(nrefs): 

171 

172 # Create new random reference set 

173 randomReference = np.random.random_sample(size=data.shape) 

174 

175 # Fit to it 

176 clusterer = KMeans(k) 

177 clusterer.fit(randomReference) 

178 

179 refDisp = clusterer.inertia_ 

180 refDisps[i] = refDisp 

181 

182 # Fit cluster to original data and create dispersion 

183 clusterer = KMeans(k) 

184 clusterer.fit(data) 

185 

186 origDisp = clusterer.inertia_ 

187 

188 # Calculate gap statistic 

189 gap = np.log(np.mean(refDisps)) - np.log(origDisp) 

190 

191 # Assign this loop's gap statistic to gaps 

192 gaps[gap_index] = gap 

193 

194 resultsdf = resultsdf.append({'cluster': k, 'gap': gap}, ignore_index=True) 

195 

196 return (gaps.argmax() + 1, resultsdf) # Plus 1 because index of 0 means 1 cluster is optimal, index 2 = 3 clusters are optimal 

197 

198 

199def getSilhouetthe(method, X, max_clusters, affinity=None, linkage=None, random_state=None): 

200 # Run clustering with different k and check the metrics 

201 silhouette_list = [] 

202 

203 k_list = list(range(2, max_clusters + 1)) 

204 for p in k_list: 

205 

206 if method == 'kmeans': 

207 clusterer = KMeans(n_clusters=p, random_state=random_state) 

208 elif method == 'agglomerative': 

209 clusterer = AgglomerativeClustering(n_clusters=p, affinity=affinity, linkage=linkage) 

210 elif method == 'spectral': 

211 clusterer = SpectralClustering(n_clusters=p, affinity="nearest_neighbors", random_state=random_state) 

212 

213 clusterer.fit(X) 

214 # The higher (up to 1) the better 

215 s = round(silhouette_score(X, clusterer.labels_), 4) 

216 

217 silhouette_list.append(s) 

218 

219 k_list.insert(0, 1) 

220 silhouette_list.insert(0, 0) 

221 

222 return silhouette_list, k_list 

223 

224 

225# plot elbow, gap & silhouette 

226def plotKmeansTrain(max_clusters, wcss, gap, sil, best_k, best_g, best_s): 

227 number_clusters = range(1, max_clusters + 1) 

228 plt.figure(figsize=[15, 4]) 

229 # 1 -- WCSS 

230 plt.subplot(131) 

231 plt.title('The Elbow Method', size=15) 

232 plt.plot(number_clusters, wcss, '-o') 

233 plt.axvline(x=best_k, c='red') 

234 plt.legend(('WCSS', 'Best K')) 

235 plt.xlabel('Cluster') 

236 plt.ylabel('Within-cluster Sum of Squares') 

237 

238 # 2 -- GAP 

239 plt.subplot(132) 

240 plt.title('Gap Statistics', size=15) 

241 plt.plot(number_clusters, gap, '-o') 

242 plt.ylabel('Gap') 

243 plt.xlabel('Cluster') 

244 plt.axvline(x=best_g, c='red') 

245 plt.legend(('GAP', 'Best K')) 

246 

247 # 3 -- SILHOUETTE 

248 plt.subplot(133) 

249 plt.title('Silhouette', size=15) 

250 plt.plot(number_clusters, sil, '-o') 

251 plt.ylabel('Silhouette score') 

252 plt.xlabel('Cluster') 

253 plt.axvline(x=best_s, c='red') 

254 plt.legend(('Silhouette', 'Best K')) 

255 

256 plt.tight_layout() 

257 

258 return plt 

259 

260 

261def plotCluster(new_plots, clusters): 

262 if len(new_plots) == 1: 

263 fs = (6, 6) 

264 ps = 110 

265 elif len(new_plots) == 2: 

266 fs = (10, 6) 

267 ps = 120 

268 elif len(new_plots) == 3: 

269 fs = (15, 4) 

270 ps = 130 

271 else: 

272 fs = (15, 8) 

273 ps = 230 

274 

275 plt.figure(figsize=fs) 

276 

277 for i, plot in enumerate(new_plots): 

278 

279 position = ps + i + 1 

280 

281 if len(plot['features']) == 2: 

282 plt.subplot(position) 

283 colors = plt.get_cmap('rainbow')(np.linspace(0.0, 1.0, len(set(clusters['cluster'])))) 

284 outliers = False 

285 for clust_number in set(clusters['cluster']): 

286 # outliers in grey 

287 if clust_number == -1: 

288 outliers = True 

289 c = ([0.4, 0.4, 0.4]) 

290 else: 

291 c = colors[clust_number] 

292 clust_set = clusters[clusters.cluster == clust_number] 

293 plt.scatter(clust_set[plot['features'][0]], clust_set[plot['features'][1]], color=c, s=20, alpha=0.85) 

294 plt.title(plot['title'], size=15) 

295 plt.xlabel(plot['features'][0], size=13) 

296 plt.ylabel(plot['features'][1], size=13) 

297 

298 if outliers: 

299 custom_lines = [Line2D([0], [0], marker='o', color=([0, 0, 0, 0]), label='Outliers', markerfacecolor=([0.4, 0.4, 0.4]), markersize=10)] 

300 plt.legend(custom_lines, ['Outliers']) 

301 

302 if len(plot['features']) == 3: 

303 ax = plt.subplot(position, projection='3d') 

304 

305 xs = clusters[plot['features'][0]] 

306 ys = clusters[plot['features'][1]] 

307 zs = clusters[plot['features'][2]] 

308 ax.scatter(xs, ys, zs, s=50, alpha=0.6, c=clusters['cluster'], cmap='rainbow') 

309 

310 ax.set_xlabel(plot['features'][0]) 

311 ax.set_ylabel(plot['features'][1]) 

312 ax.set_zlabel(plot['features'][2]) 

313 

314 plt.title(plot['title'], size=15, pad=35) 

315 

316 plt.tight_layout() 

317 

318 return plt 

319 

320 

321# plot elbow, gap & silhouette 

322def plotAgglomerativeTrain(max_clusters, sil, best_s): 

323 number_clusters = range(1, max_clusters + 1) 

324 plt.figure() 

325 # 1 -- SILHOUETTE 

326 plt.title('Silhouette', size=15) 

327 plt.plot(number_clusters, sil, '-o') 

328 plt.ylabel('Silhouette score') 

329 plt.xlabel('Cluster') 

330 plt.axvline(x=best_s, c='red') 

331 

332 plt.tight_layout() 

333 

334 return plt 

335 

336 

337def getIndependentVars(independent_vars, data, out_log, classname): 

338 if 'indexes' in independent_vars: 

339 return data.iloc[:, independent_vars['indexes']] 

340 elif 'range' in independent_vars: 

341 ranges_list = [] 

342 for rng in independent_vars['range']: 

343 for x in range(rng[0], (rng[1] + 1)): 

344 ranges_list.append(x) 

345 return data.iloc[:, ranges_list] 

346 elif 'columns' in independent_vars: 

347 return data.loc[:, independent_vars['columns']] 

348 else: 

349 fu.log(classname + ': Incorrect independent_vars format', out_log) 

350 raise SystemExit(classname + ': Incorrect independent_vars format') 

351 

352 

353def getIndependentVarsList(independent_vars): 

354 if 'indexes' in independent_vars: 

355 return ', '.join(str(x) for x in independent_vars['indexes']) 

356 elif 'range' in independent_vars: 

357 return ', '.join([str(y) for r in independent_vars['range'] for y in range(r[0], r[1] + 1)]) 

358 elif 'columns' in independent_vars: 

359 return ', '.join(independent_vars['columns']) 

360 

361 

362def getTarget(target, data, out_log, classname): 

363 if 'index' in target: 

364 return data.iloc[:, target['index']] 

365 elif 'column' in target: 

366 return data[target['column']] 

367 else: 

368 fu.log(classname + ': Incorrect target format', out_log) 

369 raise SystemExit(classname + ': Incorrect target format') 

370 

371 

372def getTargetValue(target): 

373 if 'index' in target: 

374 return str(target['index']) 

375 elif 'column' in target: 

376 return target['column'] 

377 

378 

379def getWeight(weight, data, out_log, classname): 

380 if 'index' in weight: 

381 return data.iloc[:, weight['index']] 

382 elif 'column' in weight: 

383 return data[weight['column']] 

384 else: 

385 fu.log(classname + ': Incorrect weight format', out_log) 

386 raise SystemExit(classname + ': Incorrect weight format') 

387 

388 

389def getHeader(file): 

390 with open(file, newline='') as f: 

391 reader = csv.reader(f) 

392 header = next(reader) 

393 

394 if (len(header) == 1): 

395 return list(re.sub('\\s+|;|:|,|\t', ',', header[0]).split(",")) 

396 else: 

397 return header