Coverage for biobb_ml/clustering/k_means.py: 84%
98 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-10-03 14:57 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-10-03 14:57 +0000
1#!/usr/bin/env python3
3"""Module containing the KMeansClustering class and the command line interface."""
4import argparse
5import joblib
6import pandas as pd
7from biobb_common.generic.biobb_object import BiobbObject
8from sklearn.preprocessing import StandardScaler
9from sklearn.cluster import KMeans
10from biobb_common.configuration import settings
11from biobb_common.tools import file_utils as fu
12from biobb_common.tools.file_utils import launchlogger
13from biobb_ml.clustering.common import check_input_path, check_output_path, getHeader, getIndependentVars, getIndependentVarsList, hopkins, plotCluster
16class KMeansClustering(BiobbObject):
17 """
18 | biobb_ml KMeansClustering
19 | Wrapper of the scikit-learn KMeans method.
20 | Clusters a given dataset and saves the model and scaler. Visit the `KMeans documentation page <https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html>`_ in the sklearn official website for further information.
22 Args:
23 input_dataset_path (str): Path to the input dataset. File type: input. `Sample file <https://github.com/bioexcel/biobb_ml/raw/master/biobb_ml/test/data/clustering/dataset_k_means.csv>`_. Accepted formats: csv (edam:format_3752).
24 output_results_path (str): Path to the clustered dataset. File type: output. `Sample file <https://github.com/bioexcel/biobb_ml/raw/master/biobb_ml/test/reference/clustering/ref_output_results_k_means.csv>`_. Accepted formats: csv (edam:format_3752).
25 output_model_path (str): Path to the output model file. File type: output. `Sample file <https://github.com/bioexcel/biobb_ml/raw/master/biobb_ml/test/reference/clustering/ref_output_model_k_means.pkl>`_. Accepted formats: pkl (edam:format_3653).
26 output_plot_path (str) (Optional): Path to the clustering plot. File type: output. `Sample file <https://github.com/bioexcel/biobb_ml/raw/master/biobb_ml/test/reference/clustering/ref_output_plot_k_means.png>`_. Accepted formats: png (edam:format_3603).
27 properties (dic - Python dictionary object containing the tool parameters, not input/output files):
28 * **predictors** (*dict*) - ({}) Features or columns from your dataset you want to use for fitting. You can specify either a list of columns names from your input dataset, a list of columns indexes or a range of columns indexes. Formats: { "columns": ["column1", "column2"] } or { "indexes": [0, 2, 3, 10, 11, 17] } or { "range": [[0, 20], [50, 102]] }. In case of mulitple formats, the first one will be picked.
29 * **clusters** (*int*) - (3) [1~100|1] The number of clusters to form as well as the number of centroids to generate.
30 * **plots** (*list*) - (None) List of dictionaries with all plots you want to generate. Only 2D or 3D plots accepted. Format: [ { 'title': 'Plot 1', 'features': ['feat1', 'feat2'] } ].
31 * **random_state_method** (*int*) - (5) [1~1000|1] Determines random number generation for centroid initialization.
32 * **scale** (*bool*) - (False) Whether or not to scale the input dataset.
33 * **remove_tmp** (*bool*) - (True) [WF property] Remove temporal files.
34 * **restart** (*bool*) - (False) [WF property] Do not execute if output files exist.
35 * **sandbox_path** (*str*) - ("./") [WF property] Parent path to the sandbox directory.
37 Examples:
38 This is a use example of how to use the building block from Python::
40 from biobb_ml.clustering.k_means import k_means
41 prop = {
42 'predictors': {
43 'columns': [ 'column1', 'column2', 'column3' ]
44 },
45 'clusters': 3,
46 'plots': [
47 {
48 'title': 'Plot 1',
49 'features': ['feat1', 'feat2']
50 }
51 ]
52 }
53 k_means(input_dataset_path='/path/to/myDataset.csv',
54 output_results_path='/path/to/newTable.csv',
55 output_model_path='/path/to/newModel.pkl',
56 output_plot_path='/path/to/newPlot.png',
57 properties=prop)
59 Info:
60 * wrapped_software:
61 * name: scikit-learn KMeans
62 * version: >=0.24.2
63 * license: BSD 3-Clause
64 * ontology:
65 * name: EDAM
66 * schema: http://edamontology.org/EDAM.owl
68 """
70 def __init__(self, input_dataset_path, output_results_path, output_model_path,
71 output_plot_path=None, properties=None, **kwargs) -> None:
72 properties = properties or {}
74 # Call parent class constructor
75 super().__init__(properties)
76 self.locals_var_dict = locals().copy()
78 # Input/Output files
79 self.io_dict = {
80 "in": {"input_dataset_path": input_dataset_path},
81 "out": {"output_results_path": output_results_path, "output_model_path": output_model_path, "output_plot_path": output_plot_path}
82 }
84 # Properties specific for BB
85 self.predictors = properties.get('predictors', {})
86 self.clusters = properties.get('clusters', 3)
87 self.plots = properties.get('plots', [])
88 self.random_state_method = properties.get('random_state_method', 5)
89 self.scale = properties.get('scale', False)
90 self.properties = properties
92 # Check the properties
93 self.check_properties(properties)
94 self.check_arguments()
96 def check_data_params(self, out_log, err_log):
97 """ Checks all the input/output paths and parameters """
98 self.io_dict["in"]["input_dataset_path"] = check_input_path(self.io_dict["in"]["input_dataset_path"], "input_dataset_path", out_log, self.__class__.__name__)
99 self.io_dict["out"]["output_results_path"] = check_output_path(self.io_dict["out"]["output_results_path"], "output_results_path", False, out_log, self.__class__.__name__)
100 self.io_dict["out"]["output_model_path"] = check_output_path(self.io_dict["out"]["output_model_path"], "output_model_path", False, out_log, self.__class__.__name__)
101 if self.io_dict["out"]["output_plot_path"]:
102 self.io_dict["out"]["output_plot_path"] = check_output_path(self.io_dict["out"]["output_plot_path"], "output_plot_path", True, out_log, self.__class__.__name__)
104 @launchlogger
105 def launch(self) -> int:
106 """Execute the :class:`KMeansClustering <clustering.k_means.KMeansClustering>` clustering.k_means.KMeansClustering object."""
108 # check input/output paths and parameters
109 self.check_data_params(self.out_log, self.err_log)
111 # Setup Biobb
112 if self.check_restart():
113 return 0
114 self.stage_files()
116 # load dataset
117 fu.log('Getting dataset from %s' % self.io_dict["in"]["input_dataset_path"], self.out_log, self.global_log)
118 if 'columns' in self.predictors:
119 labels = getHeader(self.io_dict["in"]["input_dataset_path"])
120 skiprows = 1
121 else:
122 labels = None
123 skiprows = None
124 data = pd.read_csv(self.io_dict["in"]["input_dataset_path"], header=None, sep="\\s+|;|:|,|\t", engine="python", skiprows=skiprows, names=labels)
126 # the features are the predictors
127 predictors = getIndependentVars(self.predictors, data, self.out_log, self.__class__.__name__)
128 fu.log('Predictors: [%s]' % (getIndependentVarsList(self.predictors)), self.out_log, self.global_log)
130 # Hopkins test
131 H = hopkins(predictors)
132 fu.log('Performing Hopkins test over dataset. H = %f' % H, self.out_log, self.global_log)
134 # scale dataset
135 if self.scale:
136 fu.log('Scaling dataset', self.out_log, self.global_log)
137 scaler = StandardScaler()
138 predictors = scaler.fit_transform(predictors)
140 # create a k-means object with self.clusters clusters
141 model = KMeans(n_clusters=self.clusters, random_state=self.random_state_method)
142 # fit the data
143 model.fit(predictors)
145 # create a copy of data, so we can see the clusters next to the original data
146 clusters = data.copy()
147 # predict the cluster for each observation
148 clusters['cluster'] = model.predict(predictors)
150 fu.log('Calculating results\n\nCLUSTERING TABLE\n\n%s\n' % clusters, self.out_log, self.global_log)
152 # save results
153 fu.log('Saving results to %s' % self.io_dict["out"]["output_results_path"], self.out_log, self.global_log)
154 clusters.to_csv(self.io_dict["out"]["output_results_path"], index=False, header=True, float_format='%.3f')
156 if self.io_dict["out"]["output_plot_path"] and self.plots:
157 new_plots = []
158 i = 0
159 for plot in self.plots:
160 if len(plot['features']) == 2 or len(plot['features']) == 3:
161 new_plots.append(plot)
162 i += 1
163 if i == 6:
164 break
166 plot = plotCluster(new_plots, clusters)
167 fu.log('Saving output plot to %s' % self.io_dict["out"]["output_plot_path"], self.out_log, self.global_log)
168 plot.savefig(self.io_dict["out"]["output_plot_path"], dpi=150)
170 # save model, scaler and parameters
171 variables = {
172 'predictors': self.predictors,
173 'scale': self.scale,
174 }
175 fu.log('Saving model to %s' % self.io_dict["out"]["output_model_path"], self.out_log, self.global_log)
176 with open(self.io_dict["out"]["output_model_path"], "wb") as f:
177 joblib.dump(model, f)
178 if self.scale:
179 joblib.dump(scaler, f)
180 joblib.dump(variables, f)
182 # Copy files to host
183 self.copy_to_host()
185 self.tmp_files.extend([
186 self.stage_io_dict.get("unique_dir")
187 ])
188 self.remove_tmp_files()
190 self.check_arguments(output_files_created=True, raise_exception=False)
192 return 0
195def k_means(input_dataset_path: str, output_results_path: str, output_model_path: str, output_plot_path: str = None, properties: dict = None, **kwargs) -> int:
196 """Execute the :class:`KMeansClustering <clustering.k_means.KMeansClustering>` class and
197 execute the :meth:`launch() <clustering.k_means.KMeansClustering.launch>` method."""
199 return KMeansClustering(input_dataset_path=input_dataset_path,
200 output_results_path=output_results_path,
201 output_model_path=output_model_path,
202 output_plot_path=output_plot_path,
203 properties=properties, **kwargs).launch()
206def main():
207 """Command line execution of this building block. Please check the command line documentation."""
208 parser = argparse.ArgumentParser(description="Wrapper of the scikit-learn KMeans method.", formatter_class=lambda prog: argparse.RawTextHelpFormatter(prog, width=99999))
209 parser.add_argument('--config', required=False, help='Configuration file')
211 # Specific args of each building block
212 required_args = parser.add_argument_group('required arguments')
213 required_args.add_argument('--input_dataset_path', required=True, help='Path to the input dataset. Accepted formats: csv.')
214 required_args.add_argument('--output_results_path', required=True, help='Path to the clustered dataset. Accepted formats: csv.')
215 required_args.add_argument('--output_model_path', required=True, help='Path to the output model file. Accepted formats: pkl.')
216 parser.add_argument('--output_plot_path', required=False, help='Path to the clustering plot. Accepted formats: png.')
218 args = parser.parse_args()
219 args.config = args.config or "{}"
220 properties = settings.ConfReader(config=args.config).get_prop_dic()
222 # Specific call of each building block
223 k_means(input_dataset_path=args.input_dataset_path,
224 output_results_path=args.output_results_path,
225 output_model_path=args.output_model_path,
226 output_plot_path=args.output_plot_path,
227 properties=properties)
230if __name__ == '__main__':
231 main()