Coverage for biobb_ml/dimensionality_reduction/pls_components.py: 72%

148 statements  

« prev     ^ index     » next       coverage.py v7.6.1, created at 2024-10-03 14:57 +0000

1#!/usr/bin/env python3 

2 

3"""Module containing the PLSComponents class and the command line interface.""" 

4import argparse 

5import warnings 

6import pandas as pd 

7import numpy as np 

8import matplotlib.pyplot as plt 

9from biobb_common.generic.biobb_object import BiobbObject 

10from scipy.signal import savgol_filter 

11from sys import stdout 

12from sklearn.cross_decomposition import PLSRegression 

13from sklearn.model_selection import cross_val_predict 

14from sklearn.metrics import mean_squared_error, r2_score 

15from biobb_common.configuration import settings 

16from biobb_common.tools import file_utils as fu 

17from biobb_common.tools.file_utils import launchlogger 

18from biobb_ml.dimensionality_reduction.common import check_input_path, check_output_path, getHeader, getIndependentVars, getIndependentVarsList, getTarget, getTargetValue, getWindowLength 

19 

20 

21class PLSComponents(BiobbObject): 

22 """ 

23 | biobb_ml PLSComponents 

24 | Wrapper of the scikit-learn PLSRegression method. 

25 | Calculates best components number for a Partial Least Square (PLS) Regression. Visit the `PLSRegression documentation page <https://scikit-learn.org/stable/modules/generated/sklearn.cross_decomposition.PLSRegression.html>`_ in the sklearn official website for further information. 

26 

27 Args: 

28 input_dataset_path (str): Path to the input dataset. File type: input. `Sample file <https://github.com/bioexcel/biobb_ml/raw/master/biobb_ml/test/data/dimensionality_reduction/dataset_pls_components.csv>`_. Accepted formats: csv (edam:format_3752). 

29 output_results_path (str): Table with R2 and MSE for calibration and cross-validation data for the best number of components. File type: output. `Sample file <https://github.com/bioexcel/biobb_ml/raw/master/biobb_ml/test/reference/dimensionality_reduction/ref_output_results_pls_components.csv>`_. Accepted formats: csv (edam:format_3752). 

30 output_plot_path (str) (Optional): Path to the Mean Square Error plot. File type: output. `Sample file <https://github.com/bioexcel/biobb_ml/raw/master/biobb_ml/test/reference/dimensionality_reduction/ref_output_plot_pls_components.png>`_. Accepted formats: png (edam:format_3603). 

31 properties (dic - Python dictionary object containing the tool parameters, not input/output files): 

32 * **features** (*dict*) - ({}) Features or columns from your dataset you want to use for fitting. You can specify either a list of columns names from your input dataset, a list of columns indexes or a range of columns indexes. Formats: { "columns": ["column1", "column2"] } or { "indexes": [0, 2, 3, 10, 11, 17] } or { "range": [[0, 20], [50, 102]] }. In case of mulitple formats, the first one will be picked. 

33 * **target** (*dict*) - ({}) Dependent variable you want to predict from your dataset. You can specify either a column name or a column index. Formats: { "column": "column3" } or { "index": 21 }. In case of mulitple formats, the first one will be picked. 

34 * **optimise** (*boolean*) - (False) Whether or not optimise the process of MSE calculation. Beware, if True selected, the process can take a long time depending on the **max_components** value. 

35 * **max_components** (*int*) - (10) [1~1000|1] Maximum number of components to use by default for PLS queries. 

36 * **cv** (*int*) - (10) [1~10000|1] Specify the number of folds in the cross-validation splitting strategy. Value must be between 2 and number of samples in the dataset. 

37 * **scale** (*bool*) - (False) Whether or not to scale the input dataset. 

38 * **remove_tmp** (*bool*) - (True) [WF property] Remove temporal files. 

39 * **restart** (*bool*) - (False) [WF property] Do not execute if output files exist. 

40 * **sandbox_path** (*str*) - ("./") [WF property] Parent path to the sandbox directory. 

41 

42 Examples: 

43 This is a use example of how to use the building block from Python:: 

44 

45 from biobb_ml.dimensionality_reduction.pls_components import pls_components 

46 prop = { 

47 'features': { 

48 'columns': [ 'column1', 'column2', 'column3' ] 

49 }, 

50 'target': { 

51 'column': 'target' 

52 }, 

53 'max_components': 10, 

54 'cv': 10 

55 } 

56 pls_components(input_dataset_path='/path/to/myDataset.csv', 

57 output_results_path='/path/to/newTable.csv', 

58 output_plot_path='/path/to/newPlot.png', 

59 properties=prop) 

60 

61 Info: 

62 * wrapped_software: 

63 * name: scikit-learn PLSRegression 

64 * version: >=0.24.2 

65 * license: BSD 3-Clause 

66 * ontology: 

67 * name: EDAM 

68 * schema: http://edamontology.org/EDAM.owl 

69 

70 """ 

71 

72 def __init__(self, input_dataset_path, output_results_path, 

73 output_plot_path=None, properties=None, **kwargs) -> None: 

74 properties = properties or {} 

75 

76 # Call parent class constructor 

77 super().__init__(properties) 

78 self.locals_var_dict = locals().copy() 

79 

80 # Input/Output files 

81 self.io_dict = { 

82 "in": {"input_dataset_path": input_dataset_path}, 

83 "out": {"output_results_path": output_results_path, "output_plot_path": output_plot_path} 

84 } 

85 

86 # Properties specific for BB 

87 self.features = properties.get('features', []) 

88 self.target = properties.get('target', '') 

89 self.optimise = properties.get('optimise', False) 

90 self.max_components = properties.get('max_components', 10) 

91 self.cv = properties.get('cv', 10) 

92 self.scale = properties.get('scale', False) 

93 self.properties = properties 

94 

95 # Check the properties 

96 self.check_properties(properties) 

97 self.check_arguments() 

98 

99 def check_data_params(self, out_log, err_log): 

100 """ Checks all the input/output paths and parameters """ 

101 self.io_dict["in"]["input_dataset_path"] = check_input_path(self.io_dict["in"]["input_dataset_path"], "input_dataset_path", out_log, self.__class__.__name__) 

102 self.io_dict["out"]["output_results_path"] = check_output_path(self.io_dict["out"]["output_results_path"], "output_results_path", False, out_log, self.__class__.__name__) 

103 if self.io_dict["out"]["output_plot_path"]: 

104 self.io_dict["out"]["output_plot_path"] = check_output_path(self.io_dict["out"]["output_plot_path"], "output_plot_path", True, out_log, self.__class__.__name__) 

105 

106 def warn(*args, **kwargs): 

107 pass 

108 

109 @launchlogger 

110 def launch(self) -> int: 

111 """Execute the :class:`PLSComponents <dimensionality_reduction.pls_components.PLSComponents>` dimensionality_reduction.pls_components.PLSComponents object.""" 

112 

113 # trick for disable warnings in interations 

114 warnings.warn = self.warn 

115 

116 # check input/output paths and parameters 

117 self.check_data_params(self.out_log, self.err_log) 

118 

119 # Setup Biobb 

120 if self.check_restart(): 

121 return 0 

122 self.stage_files() 

123 

124 # load dataset 

125 fu.log('Getting dataset from %s' % self.io_dict["in"]["input_dataset_path"], self.out_log, self.global_log) 

126 if 'columns' in self.features: 

127 labels = getHeader(self.io_dict["in"]["input_dataset_path"]) 

128 skiprows = 1 

129 else: 

130 labels = None 

131 skiprows = None 

132 data = pd.read_csv(self.io_dict["in"]["input_dataset_path"], header=None, sep="\\s+|;|:|,|\t", engine="python", skiprows=skiprows, names=labels) 

133 

134 # declare inputs, targets and weights 

135 # the inputs are all the features 

136 features = getIndependentVars(self.features, data, self.out_log, self.__class__.__name__) 

137 fu.log('Features: [%s]' % (getIndependentVarsList(self.features)), self.out_log, self.global_log) 

138 # target 

139 y = getTarget(self.target, data, self.out_log, self.__class__.__name__) 

140 fu.log('Target: %s' % (getTargetValue(self.target)), self.out_log, self.global_log) 

141 

142 if self.scale: 

143 fu.log('Scaling selected', self.out_log, self.global_log) 

144 

145 if self.optimise: 

146 

147 # get rid of baseline and linear variations calculating second derivative 

148 fu.log('Performing second derivative on the data', self.out_log, self.global_log) 

149 self.window_length = getWindowLength(17, features.shape[1]) 

150 X = savgol_filter(features, window_length=self.window_length, polyorder=2, deriv=2) 

151 

152 # run PLS from 1 to max_components 

153 fu.log('Calculating MSE for each %d components' % self.max_components, self.out_log, self.global_log) 

154 

155 mse = [] 

156 # Define MSE array to be populated 

157 msep = np.zeros((self.max_components, X.shape[1])) 

158 # Loop over the number of PLS components 

159 stdout.write("\r0% completed") 

160 for i in range(self.max_components): 

161 

162 # Regression with specified number of components, using full spectrum 

163 pls1 = PLSRegression(n_components=i+1, scale=self.scale) 

164 pls1.fit(X, y) 

165 

166 # Indices of sort spectra according to ascending absolute value of PLS coefficients 

167 sorted_ind = np.argsort(np.abs(pls1.coef_[:, 0])) 

168 # Sort spectra accordingly 

169 Xc = X[:, sorted_ind] 

170 # Discard one wavelength at a time of the sorted spectra, 

171 # regress, and calculate the MSE cross-validation 

172 for j in range(Xc.shape[1]-(i+1)): 

173 pls2 = PLSRegression(n_components=i+1) 

174 pls2.fit(Xc[:, j:], y) 

175 

176 y_cv = cross_val_predict(pls2, Xc[:, j:], y, cv=self.cv) 

177 msep[i, j] = mean_squared_error(y, y_cv) 

178 

179 # TO BE REVIEWED: 

180 # https://nirpyresearch.com/variable-selection-method-pls-python/ 

181 mx, my = np.where(msep == np.min(msep[np.nonzero(msep)])) 

182 mse.append(my[0]) 

183 

184 comp = 100*(i+1)/(self.max_components) 

185 if comp > 100: 

186 comp = 100 

187 stdout.write("\r%d%% completed" % comp) 

188 stdout.flush() 

189 print() 

190 

191 # Calculate the position of minimum in MSE 

192 mseminx, mseminy = np.where(msep == np.min(msep[np.nonzero(msep)])) 

193 best_c = mseminx[0] + 1 

194 

195 else: 

196 

197 # run PLS from 1 to max_components 

198 fu.log('Calculating MSE for each %d components' % self.max_components, self.out_log, self.global_log) 

199 

200 X = features 

201 

202 mse = [] 

203 stdout.write("\r0% completed") 

204 for i in np.arange(1, self.max_components + 1): 

205 pls = PLSRegression(n_components=i, scale=self.scale) 

206 # Cross-validation 

207 y_cv = cross_val_predict(pls, X, y, cv=self.cv) 

208 mse.append(mean_squared_error(y, y_cv)) 

209 # Trick to update status on the same line 

210 comp = 100*(i+1)/self.max_components 

211 if comp > 100: 

212 comp = 100 

213 stdout.write("\r%d%% completed" % comp) 

214 stdout.flush() 

215 print() 

216 # calculate the position of minimum in MSE 

217 best_c = np.argmin(mse) + 1 

218 

219 # mse table 

220 results_table = pd.DataFrame(data={'component': np.arange(1, self.max_components + 1), 'MSE': mse}) 

221 fu.log('Gathering results\n\nMSE TABLE\n\n%s\n' % results_table.to_string(index=False), self.out_log, self.global_log) 

222 

223 fu.log('Calculating scores and coefficients for best number of components = %d according to the MSE Method' % best_c, self.out_log, self.global_log) 

224 

225 # define PLS object with optimal number of components 

226 model = PLSRegression(n_components=best_c) 

227 # fit to the entire dataset 

228 model.fit(X, y) 

229 y_c = model.predict(X) 

230 # cross-validation 

231 y_cv = cross_val_predict(model, X, y, cv=self.cv) 

232 # calculate scores for calibration and cross-validation 

233 score_c = r2_score(y, y_c) 

234 score_cv = r2_score(y, y_cv) 

235 # calculate mean squared error for calibration and cross validation 

236 mse_c = mean_squared_error(y, y_c) 

237 mse_cv = mean_squared_error(y, y_cv) 

238 # create scores table 

239 r2_table = pd.DataFrame() 

240 r2_table["feature"] = ['R2 calib', 'R2 CV', 'MSE calib', 'MSE CV'] 

241 r2_table['coefficient'] = [score_c, score_cv, mse_c, mse_cv] 

242 

243 fu.log('Generating scores table\n\nR2 & MSE TABLE\n\n%s\n' % r2_table, self.out_log, self.global_log) 

244 

245 # save results table 

246 fu.log('Saving R2 & MSE table to %s' % self.io_dict["out"]["output_results_path"], self.out_log, self.global_log) 

247 r2_table.to_csv(self.io_dict["out"]["output_results_path"], index=False, header=True, float_format='%.3f') 

248 

249 # mse plot 

250 if self.io_dict["out"]["output_plot_path"]: 

251 fu.log('Saving MSE plot to %s' % self.io_dict["out"]["output_plot_path"], self.out_log, self.global_log) 

252 number_clusters = range(1, self.max_components + 1) 

253 plt.figure() 

254 plt.title('PLS', size=15) 

255 plt.plot(number_clusters, mse, '-o') 

256 plt.ylabel('MSE') 

257 plt.xlabel('Number of PLS Components') 

258 plt.axvline(x=best_c, c='red') 

259 plt.tight_layout() 

260 

261 plt.savefig(self.io_dict["out"]["output_plot_path"], dpi=150) 

262 

263 # Copy files to host 

264 self.copy_to_host() 

265 

266 self.tmp_files.extend([ 

267 self.stage_io_dict.get("unique_dir") 

268 ]) 

269 self.remove_tmp_files() 

270 

271 self.check_arguments(output_files_created=True, raise_exception=False) 

272 

273 return 0 

274 

275 

276def pls_components(input_dataset_path: str, output_results_path: str, output_plot_path: str = None, properties: dict = None, **kwargs) -> int: 

277 """Execute the :class:`PLSComponents <dimensionality_reduction.pls_components.PLSComponents>` class and 

278 execute the :meth:`launch() <dimensionality_reduction.pls_components.PLSComponents.launch>` method.""" 

279 

280 return PLSComponents(input_dataset_path=input_dataset_path, 

281 output_results_path=output_results_path, 

282 output_plot_path=output_plot_path, 

283 properties=properties, **kwargs).launch() 

284 

285 

286def main(): 

287 """Command line execution of this building block. Please check the command line documentation.""" 

288 parser = argparse.ArgumentParser(description="Wrapper of the scikit-learn PLSRegression method.", formatter_class=lambda prog: argparse.RawTextHelpFormatter(prog, width=99999)) 

289 parser.add_argument('--config', required=False, help='Configuration file') 

290 

291 # Specific args of each building block 

292 required_args = parser.add_argument_group('required arguments') 

293 required_args.add_argument('--input_dataset_path', required=True, help='Path to the input dataset. Accepted formats: csv.') 

294 required_args.add_argument('--output_results_path', required=True, help='Table with R2 and MSE for calibration and cross-validation data for the best number of components. Accepted formats: csv.') 

295 parser.add_argument('--output_plot_path', required=False, help='Path to the Mean Square Error plot. Accepted formats: png.') 

296 

297 args = parser.parse_args() 

298 args.config = args.config or "{}" 

299 properties = settings.ConfReader(config=args.config).get_prop_dic() 

300 

301 # Specific call of each building block 

302 pls_components(input_dataset_path=args.input_dataset_path, 

303 output_results_path=args.output_results_path, 

304 output_plot_path=args.output_plot_path, 

305 properties=properties) 

306 

307 

308if __name__ == '__main__': 

309 main()