Coverage for biobb_ml/regression/random_forest_regressor.py: 85%

143 statements  

« prev     ^ index     » next       coverage.py v7.6.1, created at 2024-10-03 14:57 +0000

1#!/usr/bin/env python3 

2 

3"""Module containing the RandomForestRegressor class and the command line interface.""" 

4import argparse 

5import joblib 

6import numpy as np 

7import pandas as pd 

8from biobb_common.generic.biobb_object import BiobbObject 

9from sklearn.preprocessing import StandardScaler 

10from sklearn.model_selection import train_test_split 

11from sklearn.metrics import mean_squared_error, r2_score 

12from sklearn import ensemble 

13from biobb_common.configuration import settings 

14from biobb_common.tools import file_utils as fu 

15from biobb_common.tools.file_utils import launchlogger 

16from biobb_ml.regression.common import check_input_path, check_output_path, getHeader, getIndependentVars, getIndependentVarsList, getTarget, getTargetValue, getWeight, plotResults 

17 

18 

19class RandomForestRegressor(BiobbObject): 

20 """ 

21 | biobb_ml RandomForestRegressor 

22 | Wrapper of the scikit-learn RandomForestRegressor method. 

23 | Trains and tests a given dataset and saves the model and scaler. Visit the `RandomForestRegressor documentation page <https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html>`_. 

24 

25 Args: 

26 input_dataset_path (str): Path to the input dataset. File type: input. `Sample file <https://github.com/bioexcel/biobb_ml/raw/master/biobb_ml/test/data/regression/dataset_random_forest_regressor.csv>`_. Accepted formats: csv (edam:format_3752). 

27 output_model_path (str): Path to the output model file. File type: output. `Sample file <https://github.com/bioexcel/biobb_ml/raw/master/biobb_ml/test/reference/regression/ref_output_model_random_forest_regressor.pkl>`_. Accepted formats: pkl (edam:format_3653). 

28 output_test_table_path (str) (Optional): Path to the test table file. File type: output. `Sample file <https://github.com/bioexcel/biobb_ml/raw/master/biobb_ml/test/reference/regression/ref_output_test_random_forest_regressor.csv>`_. Accepted formats: csv (edam:format_3752). 

29 output_plot_path (str) (Optional): Residual plot checks the error between actual values and predicted values. File type: output. `Sample file <https://github.com/bioexcel/biobb_ml/raw/master/biobb_ml/test/reference/regression/ref_output_plot_random_forest_regressor.png>`_. Accepted formats: png (edam:format_3603). 

30 properties (dic - Python dictionary object containing the tool parameters, not input/output files): 

31 * **independent_vars** (*dict*) - ({}) Independent variables you want to train from your dataset. You can specify either a list of columns names from your input dataset, a list of columns indexes or a range of columns indexes. Formats: { "columns": ["column1", "column2"] } or { "indexes": [0, 2, 3, 10, 11, 17] } or { "range": [[0, 20], [50, 102]] }. In case of mulitple formats, the first one will be picked. 

32 * **target** (*dict*) - ({}) Dependent variable you want to predict from your dataset. You can specify either a column name or a column index. Formats: { "column": "column3" } or { "index": 21 }. In case of mulitple formats, the first one will be picked. 

33 * **weight** (*dict*) - ({}) Weight variable from your dataset. You can specify either a column name or a column index. Formats: { "column": "column3" } or { "index": 21 }. In case of mulitple formats, the first one will be picked. 

34 * **n_estimators** (*int*) - (10) The number of trees in the forest. 

35 * **max_depth** (*int*) - (None) The maximum depth of the tree. 

36 * **random_state_method** (*int*) - (5) [1~1000|1] Controls the randomness of the estimator. 

37 * **random_state_train_test** (*int*) - (5) [1~1000|1] Controls the shuffling applied to the data before applying the split. 

38 * **test_size** (*float*) - (0.2) Represents the proportion of the dataset to include in the test split. It should be between 0.0 and 1.0. 

39 * **scale** (*bool*) - (False) Whether or not to scale the input dataset. 

40 * **remove_tmp** (*bool*) - (True) [WF property] Remove temporal files. 

41 * **restart** (*bool*) - (False) [WF property] Do not execute if output files exist. 

42 * **sandbox_path** (*str*) - ("./") [WF property] Parent path to the sandbox directory. 

43 

44 Examples: 

45 This is a use example of how to use the building block from Python:: 

46 

47 from biobb_ml.regression.random_forest_regressor import random_forest_regressor 

48 prop = { 

49 'independent_vars': { 

50 'columns': [ 'column1', 'column2', 'column3' ] 

51 }, 

52 'target': { 

53 'column': 'target' 

54 }, 

55 'n_estimators': 10, 

56 'max_depth': 5, 

57 'test_size': 0.2 

58 } 

59 random_forest_regressor(input_dataset_path='/path/to/myDataset.csv', 

60 output_model_path='/path/to/newModel.pkl', 

61 output_test_table_path='/path/to/newTable.csv', 

62 output_plot_path='/path/to/newPlot.png', 

63 properties=prop) 

64 

65 Info: 

66 * wrapped_software: 

67 * name: scikit-learn RandomForestRegressor 

68 * version: >0.24.2 

69 * license: BSD 3-Clause 

70 * ontology: 

71 * name: EDAM 

72 * schema: http://edamontology.org/EDAM.owl 

73 

74 """ 

75 

76 def __init__(self, input_dataset_path, output_model_path, 

77 output_test_table_path=None, output_plot_path=None, properties=None, **kwargs) -> None: 

78 properties = properties or {} 

79 

80 # Call parent class constructor 

81 super().__init__(properties) 

82 self.locals_var_dict = locals().copy() 

83 

84 # Input/Output files 

85 self.io_dict = { 

86 "in": {"input_dataset_path": input_dataset_path}, 

87 "out": {"output_model_path": output_model_path, "output_test_table_path": output_test_table_path, "output_plot_path": output_plot_path} 

88 } 

89 

90 # Properties specific for BB 

91 self.independent_vars = properties.get('independent_vars', {}) 

92 self.target = properties.get('target', {}) 

93 self.weight = properties.get('weight', {}) 

94 self.n_estimators = properties.get('n_estimators', 10) 

95 self.max_depth = properties.get('max_depth', None) 

96 self.random_state_method = properties.get('random_state_method', 5) 

97 self.random_state_train_test = properties.get('random_state_train_test', 5) 

98 self.test_size = properties.get('test_size', 0.2) 

99 self.scale = properties.get('scale', False) 

100 self.properties = properties 

101 

102 # Check the properties 

103 self.check_properties(properties) 

104 self.check_arguments() 

105 

106 def check_data_params(self, out_log, err_log): 

107 """ Checks all the input/output paths and parameters """ 

108 self.io_dict["in"]["input_dataset_path"] = check_input_path(self.io_dict["in"]["input_dataset_path"], "input_dataset_path", out_log, self.__class__.__name__) 

109 self.io_dict["out"]["output_model_path"] = check_output_path(self.io_dict["out"]["output_model_path"], "output_model_path", False, out_log, self.__class__.__name__) 

110 if self.io_dict["out"]["output_test_table_path"]: 

111 self.io_dict["out"]["output_test_table_path"] = check_output_path(self.io_dict["out"]["output_test_table_path"], "output_test_table_path", True, out_log, self.__class__.__name__) 

112 if self.io_dict["out"]["output_plot_path"]: 

113 self.io_dict["out"]["output_plot_path"] = check_output_path(self.io_dict["out"]["output_plot_path"], "output_plot_path", True, out_log, self.__class__.__name__) 

114 

115 @launchlogger 

116 def launch(self) -> int: 

117 """Execute the :class:`RandomForestRegressor <regression.random_forest_regressor.RandomForestRegressor>` regression.random_forest_regressor.RandomForestRegressor object.""" 

118 

119 # check input/output paths and parameters 

120 self.check_data_params(self.out_log, self.err_log) 

121 

122 # Setup Biobb 

123 if self.check_restart(): 

124 return 0 

125 self.stage_files() 

126 

127 # load dataset 

128 fu.log('Getting dataset from %s' % self.io_dict["in"]["input_dataset_path"], self.out_log, self.global_log) 

129 if 'columns' in self.independent_vars: 

130 labels = getHeader(self.io_dict["in"]["input_dataset_path"]) 

131 skiprows = 1 

132 else: 

133 labels = None 

134 skiprows = None 

135 data = pd.read_csv(self.io_dict["in"]["input_dataset_path"], header=None, sep="\\s+|;|:|,|\t", engine="python", skiprows=skiprows, names=labels) 

136 

137 # declare inputs, targets and weights 

138 # the inputs are all the independent variables 

139 X = getIndependentVars(self.independent_vars, data, self.out_log, self.__class__.__name__) 

140 fu.log('Independent variables: [%s]' % (getIndependentVarsList(self.independent_vars)), self.out_log, self.global_log) 

141 # target 

142 y = getTarget(self.target, data, self.out_log, self.__class__.__name__) 

143 fu.log('Target: %s' % (getTargetValue(self.target)), self.out_log, self.global_log) 

144 # weights 

145 if self.weight: 

146 w = getWeight(self.weight, data, self.out_log, self.__class__.__name__) 

147 fu.log('Weight column provided', self.out_log, self.global_log) 

148 

149 # train / test split 

150 fu.log('Creating train and test sets', self.out_log, self.global_log) 

151 arrays_sets = (X, y) 

152 # if user provide weights 

153 if self.weight: 

154 arrays_sets = arrays_sets + (w,) 

155 X_train, X_test, y_train, y_test, w_train, w_test = train_test_split(*arrays_sets, test_size=self.test_size, random_state=self.random_state_train_test) 

156 else: 

157 X_train, X_test, y_train, y_test = train_test_split(*arrays_sets, test_size=self.test_size, random_state=self.random_state_train_test) 

158 

159 # scale dataset 

160 if self.scale: 

161 fu.log('Scaling dataset', self.out_log, self.global_log) 

162 scaler = StandardScaler() 

163 X_train = scaler.fit_transform(X_train) 

164 

165 # regression 

166 fu.log('Training dataset applying random forest regressor', self.out_log, self.global_log) 

167 model = ensemble.RandomForestRegressor(max_depth=self.max_depth, n_estimators=self.n_estimators, random_state=self.random_state_method) 

168 arrays_fit = (X_train, y_train) 

169 # if user provide weights 

170 if self.weight: 

171 arrays_fit = arrays_fit + (w_train,) 

172 

173 model.fit(*arrays_fit) 

174 

175 # scores and coefficients train 

176 y_hat_train = model.predict(X_train) 

177 rmse = (np.sqrt(mean_squared_error(y_train, y_hat_train))) 

178 rss = ((y_train - y_hat_train) ** 2).sum() 

179 score_train_inputs = (y_train, y_hat_train) 

180 if self.weight: 

181 score_train_inputs = score_train_inputs + (w_train,) 

182 score = r2_score(*score_train_inputs) 

183 

184 # r-squared 

185 r2_table = pd.DataFrame() 

186 r2_table["feature"] = ['R2', 'RMSE', 'RSS'] 

187 r2_table['coefficient'] = [score, rmse, rss] 

188 

189 fu.log('Calculating scores and coefficients for TRAINING dataset\n\nSCORES\n\n%s\n' % r2_table, self.out_log, self.global_log) 

190 

191 # testing 

192 # predict data from x_test 

193 if self.scale: 

194 X_test = scaler.transform(X_test) 

195 y_hat_test = model.predict(X_test) 

196 test_table = pd.DataFrame(y_hat_test, columns=['prediction']) 

197 # reset y_test (problem with old indexes column) 

198 y_test = y_test.reset_index(drop=True) 

199 # add real values to predicted ones in test_table table 

200 test_table['target'] = y_test 

201 # calculate difference between target and prediction (absolute and %) 

202 test_table['residual'] = test_table['target'] - test_table['prediction'] 

203 test_table['difference %'] = np.absolute(test_table['residual']/test_table['target']*100) 

204 # sort by difference in % 

205 test_table = test_table.sort_values(by=['difference %']) 

206 test_table = test_table.reset_index(drop=True) 

207 fu.log('Testing\n\nTEST DATA\n\n%s\n' % test_table, self.out_log, self.global_log) 

208 

209 # scores and coefficients test 

210 score_test_inputs = (y_test, y_hat_test) 

211 if self.weight: 

212 score_test_inputs = score_test_inputs + (w_test,) 

213 r2_test = r2_score(*score_test_inputs) 

214 rmse_test = np.sqrt(mean_squared_error(y_test, y_hat_test)) 

215 rss_test = ((y_test - y_hat_test) ** 2).sum() 

216 

217 # r-squared 

218 r2_table_test = pd.DataFrame() 

219 r2_table_test["feature"] = ['R2', 'RMSE', 'RSS'] 

220 r2_table_test['coefficient'] = [r2_test, rmse_test, rss_test] 

221 

222 fu.log('Calculating scores and coefficients for TESTING dataset\n\nSCORES\n\n%s\n' % r2_table_test, self.out_log, self.global_log) 

223 

224 if (self.io_dict["out"]["output_test_table_path"]): 

225 fu.log('Saving testing data to %s' % self.io_dict["out"]["output_test_table_path"], self.out_log, self.global_log) 

226 test_table.to_csv(self.io_dict["out"]["output_test_table_path"], index=False, header=True) 

227 

228 # create test plot 

229 if (self.io_dict["out"]["output_plot_path"]): 

230 fu.log('Saving residual plot to %s' % self.io_dict["out"]["output_plot_path"], self.out_log, self.global_log) 

231 y_hat_test = y_hat_test.flatten() 

232 y_hat_train = y_hat_train.flatten() 

233 plot = plotResults(y_train, y_hat_train, y_test, y_hat_test) 

234 plot.savefig(self.io_dict["out"]["output_plot_path"], dpi=150) 

235 

236 # save model, scaler and parameters 

237 variables = { 

238 'target': self.target, 

239 'independent_vars': self.independent_vars, 

240 'scale': self.scale 

241 } 

242 fu.log('Saving model to %s' % self.io_dict["out"]["output_model_path"], self.out_log, self.global_log) 

243 with open(self.io_dict["out"]["output_model_path"], "wb") as f: 

244 joblib.dump(model, f) 

245 if self.scale: 

246 joblib.dump(scaler, f) 

247 joblib.dump(variables, f) 

248 

249 # Copy files to host 

250 self.copy_to_host() 

251 

252 self.tmp_files.extend([ 

253 self.stage_io_dict.get("unique_dir") 

254 ]) 

255 self.remove_tmp_files() 

256 

257 self.check_arguments(output_files_created=True, raise_exception=False) 

258 

259 return 0 

260 

261 

262def random_forest_regressor(input_dataset_path: str, output_model_path: str, output_test_table_path: str = None, output_plot_path: str = None, properties: dict = None, **kwargs) -> int: 

263 """Execute the :class:`RandomForestRegressor <regression.random_forest_regressor.RandomForestRegressor>` class and 

264 execute the :meth:`launch() <regression.random_forest_regressor.RandomForestRegressor.launch>` method.""" 

265 

266 return RandomForestRegressor(input_dataset_path=input_dataset_path, 

267 output_model_path=output_model_path, 

268 output_test_table_path=output_test_table_path, 

269 output_plot_path=output_plot_path, 

270 properties=properties, **kwargs).launch() 

271 

272 

273def main(): 

274 """Command line execution of this building block. Please check the command line documentation.""" 

275 parser = argparse.ArgumentParser(description="Wrapper of the scikit-learn RandomForestRegressor method.", formatter_class=lambda prog: argparse.RawTextHelpFormatter(prog, width=99999)) 

276 parser.add_argument('--config', required=False, help='Configuration file') 

277 

278 # Specific args of each building block 

279 required_args = parser.add_argument_group('required arguments') 

280 required_args.add_argument('--input_dataset_path', required=True, help='Path to the input dataset. Accepted formats: csv.') 

281 required_args.add_argument('--output_model_path', required=True, help='Path to the output model file. Accepted formats: pkl.') 

282 parser.add_argument('--output_test_table_path', required=False, help='Path to the test table file. Accepted formats: csv.') 

283 parser.add_argument('--output_plot_path', required=False, help='Residual plot checks the error between actual values and predicted values. Accepted formats: png.') 

284 

285 args = parser.parse_args() 

286 args.config = args.config or "{}" 

287 properties = settings.ConfReader(config=args.config).get_prop_dic() 

288 

289 # Specific call of each building block 

290 random_forest_regressor(input_dataset_path=args.input_dataset_path, 

291 output_model_path=args.output_model_path, 

292 output_test_table_path=args.output_test_table_path, 

293 output_plot_path=args.output_plot_path, 

294 properties=properties) 

295 

296 

297if __name__ == '__main__': 

298 main()