Coverage for biobb_ml/neural_networks/recurrent_neural_network.py: 88%

138 statements  

« prev     ^ index     » next       coverage.py v7.6.1, created at 2024-10-03 14:57 +0000

1#!/usr/bin/env python3 

2 

3"""Module containing the RecurrentNeuralNetwork class and the command line interface.""" 

4import argparse 

5import h5py 

6import json 

7import numpy as np 

8import pandas as pd 

9from biobb_common.generic.biobb_object import BiobbObject 

10from tensorflow.python.keras.saving import hdf5_format 

11from tensorflow.keras import Sequential 

12from tensorflow.keras.layers import Dense 

13from tensorflow.keras.layers import LSTM 

14from tensorflow.keras.callbacks import EarlyStopping 

15from biobb_common.configuration import settings 

16from biobb_common.tools import file_utils as fu 

17from biobb_common.tools.file_utils import launchlogger 

18from biobb_ml.neural_networks.common import check_input_path, check_output_path, getHeader, getTargetValue, split_sequence, plotResultsReg 

19 

20 

21class RecurrentNeuralNetwork(BiobbObject): 

22 """ 

23 | biobb_ml RecurrentNeuralNetwork 

24 | Wrapper of the TensorFlow Keras LSTM method using Recurrent Neural Networks. 

25 | Trains and tests a given dataset and save the complete model for a Recurrent Neural Network. Visit the `LSTM documentation page <https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM>`_ in the TensorFlow Keras official website for further information. 

26 

27 Args: 

28 input_dataset_path (str): Path to the input dataset. File type: input. `Sample file <https://github.com/bioexcel/biobb_ml/raw/master/biobb_ml/test/data/neural_networks/dataset_recurrent.csv>`_. Accepted formats: csv (edam:format_3752). 

29 output_model_path (str): Path to the output model file. File type: output. `Sample file <https://github.com/bioexcel/biobb_ml/raw/master/biobb_ml/test/reference/neural_networks/ref_output_model_recurrent.h5>`_. Accepted formats: h5 (edam:format_3590). 

30 output_test_table_path (str) (Optional): Path to the test table file. File type: output. `Sample file <https://github.com/bioexcel/biobb_ml/raw/master/biobb_ml/test/reference/neural_networks/ref_output_test_recurrent.csv>`_. Accepted formats: csv (edam:format_3752). 

31 output_plot_path (str) (Optional): Loss, accuracy and MSE plots. File type: output. `Sample file <https://github.com/bioexcel/biobb_ml/raw/master/biobb_ml/test/reference/neural_networks/ref_output_plot_recurrent.png>`_. Accepted formats: png (edam:format_3603). 

32 properties (dic - Python dictionary object containing the tool parameters, not input/output files): 

33 * **target** (*dict*) - ({}) Dependent variable you want to predict from your dataset. You can specify either a column name or a column index. Formats: { "column": "column3" } or { "index": 21 }. In case of mulitple formats, the first one will be picked. 

34 * **validation_size** (*float*) - (0.2) [0~1|0.05] Represents the proportion of the dataset to include in the validation split. It should be between 0.0 and 1.0. 

35 * **window_size** (*int*) - (5) [0~100|1] Number of steps for each window of training model. 

36 * **test_size** (*int*) - (5) [0~100000|1] Represents the number of samples of the dataset to include in the test split. 

37 * **hidden_layers** (*list*) - (None) List of dictionaries with hidden layers values. Format: [ { 'size': 50, 'activation': 'relu' } ]. 

38 * **optimizer** (*string*) - ("Adam") Name of optimizer instance. Values: Adadelta (Adadelta optimization is a stochastic gradient descent method that is based on adaptive learning rate per dimension to address two drawbacks: the continual decay of learning rates throughout training and the need for a manually selected global learning rate), Adagrad (Adagrad is an optimizer with parameter-specific learning rates; which are adapted relative to how frequently a parameter gets updated during training. The more updates a parameter receives; the smaller the updates), Adam (Adam optimization is a stochastic gradient descent method that is based on adaptive estimation of first-order and second-order moments), Adamax (It is a variant of Adam based on the infinity norm. Default parameters follow those provided in the paper. Adamax is sometimes superior to adam; specially in models with embeddings), Ftrl (Optimizer that implements the FTRL algorithm), Nadam (Much like Adam is essentially RMSprop with momentum; Nadam is Adam with Nesterov momentum), RMSprop (Optimizer that implements the RMSprop algorithm), SGD (Gradient descent -with momentum- optimizer). 

39 * **learning_rate** (*float*) - (0.02) [0~100|0.01] Determines the step size at each iteration while moving toward a minimum of a loss function 

40 * **batch_size** (*int*) - (100) [0~1000|1] Number of samples per gradient update. 

41 * **max_epochs** (*int*) - (100) [0~1000|1] Number of epochs to train the model. As the early stopping is enabled, this is a maximum. 

42 * **normalize_cm** (*bool*) - (False) Whether or not to normalize the confusion matrix. 

43 * **remove_tmp** (*bool*) - (True) [WF property] Remove temporal files. 

44 * **restart** (*bool*) - (False) [WF property] Do not execute if output files exist. 

45 * **sandbox_path** (*str*) - ("./") [WF property] Parent path to the sandbox directory. 

46 

47 Examples: 

48 This is a use example of how to use the building block from Python:: 

49 

50 from biobb_ml.neural_networks.recurrent_neural_network import recurrent_neural_network 

51 prop = { 

52 'target': { 

53 'column': 'target' 

54 }, 

55 'window_size': 5, 

56 'validation_size': 0.2, 

57 'test_size': 0.2, 

58 'hidden_layers': [ 

59 { 

60 'size': 10, 

61 'activation': 'relu' 

62 }, 

63 { 

64 'size': 8, 

65 'activation': 'relu' 

66 } 

67 ], 

68 'optimizer': 'Adam', 

69 'learning_rate': 0.01, 

70 'batch_size': 32, 

71 'max_epochs': 150 

72 } 

73 recurrent_neural_network(input_dataset_path='/path/to/myDataset.csv', 

74 output_model_path='/path/to/newModel.h5', 

75 output_test_table_path='/path/to/newTable.csv', 

76 output_plot_path='/path/to/newPlot.png', 

77 properties=prop) 

78 

79 Info: 

80 * wrapped_software: 

81 * name: TensorFlow Keras LSTM 

82 * version: >2.1.0 

83 * license: MIT 

84 * ontology: 

85 * name: EDAM 

86 * schema: http://edamontology.org/EDAM.owl 

87 

88 """ 

89 

90 def __init__(self, input_dataset_path, output_model_path, 

91 output_test_table_path=None, output_plot_path=None, properties=None, **kwargs) -> None: 

92 properties = properties or {} 

93 

94 # Call parent class constructor 

95 super().__init__(properties) 

96 self.locals_var_dict = locals().copy() 

97 

98 # Input/Output files 

99 self.io_dict = { 

100 "in": {"input_dataset_path": input_dataset_path}, 

101 "out": {"output_model_path": output_model_path, "output_test_table_path": output_test_table_path, "output_plot_path": output_plot_path} 

102 } 

103 

104 # Properties specific for BB 

105 self.target = properties.get('target', '') 

106 self.validation_size = properties.get('validation_size', 0.1) 

107 self.window_size = properties.get('window_size', 5) 

108 self.test_size = properties.get('test_size', 5) 

109 self.hidden_layers = properties.get('hidden_layers', []) 

110 self.optimizer = properties.get('optimizer', 'Adam') 

111 self.learning_rate = properties.get('learning_rate', 0.02) 

112 self.batch_size = properties.get('batch_size', 100) 

113 self.max_epochs = properties.get('max_epochs', 100) 

114 self.normalize_cm = properties.get('normalize_cm', False) 

115 self.properties = properties 

116 

117 # Check the properties 

118 self.check_properties(properties) 

119 self.check_arguments() 

120 

121 def check_data_params(self, out_log, err_log): 

122 """ Checks all the input/output paths and parameters """ 

123 self.io_dict["in"]["input_dataset_path"] = check_input_path(self.io_dict["in"]["input_dataset_path"], "input_dataset_path", False, out_log, self.__class__.__name__) 

124 self.io_dict["out"]["output_model_path"] = check_output_path(self.io_dict["out"]["output_model_path"], "output_model_path", False, out_log, self.__class__.__name__) 

125 self.io_dict["out"]["output_test_table_path"] = check_output_path(self.io_dict["out"]["output_test_table_path"], "output_test_table_path", True, out_log, self.__class__.__name__) 

126 self.io_dict["out"]["output_plot_path"] = check_output_path(self.io_dict["out"]["output_plot_path"], "output_plot_path", True, out_log, self.__class__.__name__) 

127 

128 def build_model(self, input_shape): 

129 """ Builds Neural network according to hidden_layers property """ 

130 

131 # create model 

132 model = Sequential([]) 

133 

134 # if no hidden_layers provided, create manually a hidden layer with default values 

135 if not self.hidden_layers: 

136 self.hidden_layers = [{'size': 50, 'activation': 'relu'}] 

137 

138 # generate hidden_layers 

139 for i, layer in enumerate(self.hidden_layers): 

140 if i == 0: 

141 model.add(LSTM(layer['size'], activation=layer['activation'], kernel_initializer='he_normal', input_shape=input_shape)) # 1st hidden layer 

142 else: 

143 model.add(Dense(layer['size'], activation=layer['activation'], kernel_initializer='he_normal')) 

144 

145 model.add(Dense(1)) # output layer 

146 

147 return model 

148 

149 @launchlogger 

150 def launch(self) -> int: 

151 """Execute the :class:`RecurrentNeuralNetwork <neural_networks.recurrent_neural_network.RecurrentNeuralNetwork>` neural_networks.recurrent_neural_network.RecurrentNeuralNetwork object.""" 

152 

153 # check input/output paths and parameters 

154 self.check_data_params(self.out_log, self.err_log) 

155 

156 # Setup Biobb 

157 if self.check_restart(): 

158 return 0 

159 self.stage_files() 

160 

161 # load dataset 

162 fu.log('Getting dataset from %s' % self.io_dict["in"]["input_dataset_path"], self.out_log, self.global_log) 

163 if 'column' in self.target: 

164 labels = getHeader(self.io_dict["in"]["input_dataset_path"]) 

165 skiprows = 1 

166 else: 

167 labels = None 

168 skiprows = None 

169 data = pd.read_csv(self.io_dict["in"]["input_dataset_path"], header=None, sep="\\s+|;|:|,|\t", engine="python", skiprows=skiprows, names=labels) 

170 

171 # get target column 

172 target = data[getTargetValue(self.target)].to_numpy() 

173 

174 # split into samples 

175 X, y = split_sequence(target, self.window_size) 

176 # reshape into [samples, timesteps, features] 

177 X = X.reshape((X.shape[0], X.shape[1], 1)) 

178 

179 # train / test split 

180 fu.log('Creating train and test sets', self.out_log, self.global_log) 

181 X_train, X_test, y_train, y_test = X[:-self.test_size], X[-self.test_size:], y[:-self.test_size], y[-self.test_size:] 

182 

183 # build model 

184 fu.log('Building model', self.out_log, self.global_log) 

185 model = self.build_model((X_train.shape[1], 1)) 

186 

187 # model summary 

188 stringlist = [] 

189 model.summary(print_fn=lambda x: stringlist.append(x)) 

190 model_summary = "\n".join(stringlist) 

191 fu.log('Model summary:\n\n%s\n' % model_summary, self.out_log, self.global_log) 

192 

193 # get optimizer 

194 mod = __import__('tensorflow.keras.optimizers', fromlist=[self.optimizer]) 

195 opt_class = getattr(mod, self.optimizer) 

196 opt = opt_class(lr=self.learning_rate) 

197 # compile model 

198 model.compile(optimizer=opt, loss='mse', metrics=['mse', 'mae']) 

199 

200 # fitting 

201 fu.log('Training model', self.out_log, self.global_log) 

202 # set an early stopping mechanism 

203 # set patience=2, to be a bit tolerant against random validation loss increases 

204 early_stopping = EarlyStopping(patience=2) 

205 # fit the model 

206 mf = model.fit(X_train, 

207 y_train, 

208 batch_size=self.batch_size, 

209 epochs=self.max_epochs, 

210 callbacks=[early_stopping], 

211 validation_split=self.validation_size, 

212 verbose=1) 

213 

214 train_metrics = pd.DataFrame() 

215 train_metrics['metric'] = ['Train loss', ' Train MAE', 'Train MSE', 'Validation loss', 'Validation MAE', 'Validation MSE'] 

216 train_metrics['coefficient'] = [mf.history['loss'][-1], mf.history['mae'][-1], mf.history['mse'][-1], mf.history['val_loss'][-1], mf.history['val_mae'][-1], mf.history['val_mse'][-1]] 

217 

218 fu.log('Training metrics\n\nTRAINING METRICS TABLE\n\n%s\n' % train_metrics, self.out_log, self.global_log) 

219 

220 # testing 

221 fu.log('Testing model', self.out_log, self.global_log) 

222 test_loss, test_mse, test_mae = model.evaluate(X_test, y_test) 

223 

224 # predict data from X_test 

225 test_predictions = model.predict(X_test) 

226 test_predictions = np.around(test_predictions, decimals=2) 

227 tpr = np.squeeze(np.asarray(test_predictions)) 

228 

229 test_metrics = pd.DataFrame() 

230 test_metrics['metric'] = ['Test loss', 'Test MAE', 'Test MSE'] 

231 test_metrics['coefficient'] = [test_loss, test_mae, test_mse] 

232 

233 fu.log('Testing metrics\n\nTESTING METRICS TABLE\n\n%s\n' % test_metrics, self.out_log, self.global_log) 

234 

235 test_table = pd.DataFrame() 

236 test_table['prediction'] = tpr 

237 test_table['target'] = y_test 

238 test_table['residual'] = test_table['target'] - test_table['prediction'] 

239 test_table['difference %'] = np.absolute(test_table['residual']/test_table['target']*100) 

240 pd.set_option('display.float_format', lambda x: '%.2f' % x) 

241 # sort by difference in % 

242 test_table = test_table.sort_values(by=['difference %']) 

243 test_table = test_table.reset_index(drop=True) 

244 fu.log('TEST DATA\n\n%s\n' % test_table, self.out_log, self.global_log) 

245 

246 # save test data 

247 if (self.io_dict["out"]["output_test_table_path"]): 

248 fu.log('Saving testing data to %s' % self.io_dict["out"]["output_test_table_path"], self.out_log, self.global_log) 

249 test_table.to_csv(self.io_dict["out"]["output_test_table_path"], index=False, header=True) 

250 

251 # create test plot 

252 if (self.io_dict["out"]["output_plot_path"]): 

253 fu.log('Saving plot to %s' % self.io_dict["out"]["output_plot_path"], self.out_log, self.global_log) 

254 test_predictions = test_predictions.flatten() 

255 train_predictions = model.predict(X_train).flatten() 

256 plot = plotResultsReg(mf.history, y_test, test_predictions, y_train, train_predictions) 

257 plot.savefig(self.io_dict["out"]["output_plot_path"], dpi=150) 

258 

259 # save model and parameters 

260 vars_obj = { 

261 'target': self.target, 

262 'window_size': self.window_size, 

263 'type': 'recurrent' 

264 } 

265 variables = json.dumps(vars_obj) 

266 fu.log('Saving model to %s' % self.io_dict["out"]["output_model_path"], self.out_log, self.global_log) 

267 with h5py.File(self.io_dict["out"]["output_model_path"], mode='w') as f: 

268 hdf5_format.save_model_to_hdf5(model, f) 

269 f.attrs['variables'] = variables 

270 

271 # Copy files to host 

272 self.copy_to_host() 

273 

274 self.tmp_files.extend([ 

275 self.stage_io_dict.get("unique_dir") 

276 ]) 

277 self.remove_tmp_files() 

278 

279 self.check_arguments(output_files_created=True, raise_exception=False) 

280 

281 return 0 

282 

283 

284def recurrent_neural_network(input_dataset_path: str, output_model_path: str, output_test_table_path: str = None, output_plot_path: str = None, properties: dict = None, **kwargs) -> int: 

285 """Execute the :class:`RecurrentNeuralNetwork <neural_networks.recurrent_neural_network.RecurrentNeuralNetwork>` class and 

286 execute the :meth:`launch() <neural_networks.recurrent_neural_network.RecurrentNeuralNetwork.launch>` method.""" 

287 

288 return RecurrentNeuralNetwork(input_dataset_path=input_dataset_path, 

289 output_model_path=output_model_path, 

290 output_test_table_path=output_test_table_path, 

291 output_plot_path=output_plot_path, 

292 properties=properties, **kwargs).launch() 

293 

294 

295def main(): 

296 """Command line execution of this building block. Please check the command line documentation.""" 

297 parser = argparse.ArgumentParser(description="Wrapper of the TensorFlow Keras LSTM method.", formatter_class=lambda prog: argparse.RawTextHelpFormatter(prog, width=99999)) 

298 parser.add_argument('--config', required=False, help='Configuration file') 

299 

300 # Specific args of each building block 

301 required_args = parser.add_argument_group('required arguments') 

302 required_args.add_argument('--input_dataset_path', required=True, help='Path to the input dataset. Accepted formats: csv.') 

303 required_args.add_argument('--output_model_path', required=True, help='Path to the output model file. Accepted formats: h5.') 

304 parser.add_argument('--output_test_table_path', required=False, help='Path to the test table file. Accepted formats: csv.') 

305 parser.add_argument('--output_plot_path', required=False, help='Loss, accuracy and MSE plots. Accepted formats: png.') 

306 

307 args = parser.parse_args() 

308 args.config = args.config or "{}" 

309 properties = settings.ConfReader(config=args.config).get_prop_dic() 

310 

311 # Specific call of each building block 

312 recurrent_neural_network(input_dataset_path=args.input_dataset_path, 

313 output_model_path=args.output_model_path, 

314 output_test_table_path=args.output_test_table_path, 

315 output_plot_path=args.output_plot_path, 

316 properties=properties) 

317 

318 

319if __name__ == '__main__': 

320 main()