Coverage for biobb_ml/neural_networks/regression_neural_network.py: 85%

179 statements  

« prev     ^ index     » next       coverage.py v7.6.1, created at 2024-10-03 14:57 +0000

1#!/usr/bin/env python3 

2 

3"""Module containing the RegressionNeuralNetwork class and the command line interface.""" 

4import argparse 

5import h5py 

6import json 

7import numpy as np 

8import pandas as pd 

9from biobb_common.generic.biobb_object import BiobbObject 

10from tensorflow.python.keras.saving import hdf5_format 

11from sklearn.preprocessing import scale 

12from sklearn.model_selection import train_test_split 

13from sklearn.metrics import r2_score 

14from tensorflow.keras import Sequential 

15from tensorflow.keras.layers import Dense 

16from tensorflow.keras.callbacks import EarlyStopping 

17from biobb_common.configuration import settings 

18from biobb_common.tools import file_utils as fu 

19from biobb_common.tools.file_utils import launchlogger 

20from biobb_ml.neural_networks.common import check_input_path, check_output_path, getHeader, getTargetValue, plotResultsReg, getFeatures, getIndependentVarsList, getTarget, getWeight 

21 

22 

23class RegressionNeuralNetwork(BiobbObject): 

24 """ 

25 | biobb_ml RegressionNeuralNetwork 

26 | Wrapper of the TensorFlow Keras Sequential method for regression. 

27 | Trains and tests a given dataset and save the complete model for a Neural Network Regression. Visit the `Sequential documentation page <https://www.tensorflow.org/api_docs/python/tf/keras/Sequential>`_ in the TensorFlow Keras official website for further information. 

28 

29 Args: 

30 input_dataset_path (str): Path to the input dataset. File type: input. `Sample file <https://github.com/bioexcel/biobb_ml/raw/master/biobb_ml/test/data/neural_networks/dataset_regression.csv>`_. Accepted formats: csv (edam:format_3752). 

31 output_model_path (str): Path to the output model file. File type: output. `Sample file <http://github.com/bioexcel/biobb_ml/raw/master/biobb_ml/test/reference/neural_networks/ref_output_model_regression.h5>`_. Accepted formats: h5 (edam:format_3590). 

32 output_test_table_path (str) (Optional): Path to the test table file. File type: output. `Sample file <https://github.com/bioexcel/biobb_ml/raw/master/biobb_ml/test/reference/neural_networks/ref_output_test_regression.csv>`_. Accepted formats: csv (edam:format_3752). 

33 output_plot_path (str) (Optional): Loss, MAE and MSE plots. File type: output. `Sample file <https://github.com/bioexcel/biobb_ml/raw/master/biobb_ml/test/reference/neural_networks/ref_output_plot_regression.png>`_. Accepted formats: png (edam:format_3603). 

34 properties (dic - Python dictionary object containing the tool parameters, not input/output files): 

35 * **features** (*dict*) - ({}) Independent variables or columns from your dataset you want to train. You can specify either a list of columns names from your input dataset, a list of columns indexes or a range of columns indexes. Formats: { "columns": ["column1", "column2"] } or { "indexes": [0, 2, 3, 10, 11, 17] } or { "range": [[0, 20], [50, 102]] }. In case of mulitple formats, the first one will be picked. 

36 * **target** (*dict*) - ({}) Dependent variable you want to predict from your dataset. You can specify either a column name or a column index. Formats: { "column": "column3" } or { "index": 21 }. In case of mulitple formats, the first one will be picked. 

37 * **weight** (*dict*) - ({}) Weight variable from your dataset. You can specify either a column name or a column index. Formats: { "column": "column3" } or { "index": 21 }. In case of mulitple formats, the first one will be picked. 

38 * **validation_size** (*float*) - (0.2) [0~1|0.05] Represents the proportion of the dataset to include in the validation split. It should be between 0.0 and 1.0. 

39 * **test_size** (*float*) - (0.1) [0~1|0.05] Represents the proportion of the dataset to include in the test split. It should be between 0.0 and 1.0. 

40 * **hidden_layers** (*list*) - (None) List of dictionaries with hidden layers values. Format: [ { 'size': 50, 'activation': 'relu' } ]. 

41 * **output_layer_activation** (*string*) - ("softmax") Activation function to use in the output layer. Values: sigmoid (Sigmoid activation function: sigmoid[x] = 1 / [1 + exp[-x]]), tanh (Hyperbolic tangent activation function), relu (Applies the rectified linear unit activation function), softmax(Softmax converts a real vector to a vector of categorical probabilities). 

42 * **optimizer** (*string*) - ("Adam") Name of optimizer instance. Values: Adadelta (Adadelta optimization is a stochastic gradient descent method that is based on adaptive learning rate per dimension to address two drawbacks: the continual decay of learning rates throughout training and the need for a manually selected global learning rate), Adagrad (Adagrad is an optimizer with parameter-specific learning rates; which are adapted relative to how frequently a parameter gets updated during training. The more updates a parameter receives; the smaller the updates), Adam (Adam optimization is a stochastic gradient descent method that is based on adaptive estimation of first-order and second-order moments), Adamax (It is a variant of Adam based on the infinity norm. Default parameters follow those provided in the paper. Adamax is sometimes superior to adam; specially in models with embeddings), Ftrl (Optimizer that implements the FTRL algorithm), Nadam (Much like Adam is essentially RMSprop with momentum; Nadam is Adam with Nesterov momentum), RMSprop (Optimizer that implements the RMSprop algorithm), SGD (Gradient descent -with momentum- optimizer). 

43 * **learning_rate** (*float*) - (0.02) [0~100|0.01] Determines the step size at each iteration while moving toward a minimum of a loss function 

44 * **batch_size** (*int*) - (100) [0~1000|1] Number of samples per gradient update. 

45 * **max_epochs** (*int*) - (100) [0~1000|1] Number of epochs to train the model. As the early stopping is enabled, this is a maximum. 

46 * **random_state** (*int*) - (5) [1~1000|1] Controls the shuffling applied to the data before applying the split. . 

47 * **scale** (*bool*) - (False) Whether or not to scale the input dataset. 

48 * **remove_tmp** (*bool*) - (True) [WF property] Remove temporal files. 

49 * **restart** (*bool*) - (False) [WF property] Do not execute if output files exist. 

50 * **sandbox_path** (*str*) - ("./") [WF property] Parent path to the sandbox directory. 

51 

52 Examples: 

53 This is a use example of how to use the building block from Python:: 

54 

55 from biobb_ml.neural_networks.regression_neural_network import regression_neural_network 

56 prop = { 

57 'features': { 

58 'columns': [ 'column1', 'column2', 'column3' ] 

59 }, 

60 'target': { 

61 'column': 'target' 

62 }, 

63 'validation_size': 0.2, 

64 'test_size': .33, 

65 'hidden_layers': [ 

66 { 

67 'size': 10, 

68 'activation': 'relu' 

69 }, 

70 { 

71 'size': 8, 

72 'activation': 'relu' 

73 } 

74 ], 

75 'optimizer': 'Adam', 

76 'learning_rate': 0.01, 

77 'batch_size': 32, 

78 'max_epochs': 150 

79 } 

80 regression_neural_network(input_dataset_path='/path/to/myDataset.csv', 

81 output_model_path='/path/to/newModel.h5', 

82 output_test_table_path='/path/to/newTable.csv', 

83 output_plot_path='/path/to/newPlot.png', 

84 properties=prop) 

85 

86 Info: 

87 * wrapped_software: 

88 * name: TensorFlow Keras Sequential 

89 * version: >2.1.0 

90 * license: MIT 

91 * ontology: 

92 * name: EDAM 

93 * schema: http://edamontology.org/EDAM.owl 

94 

95 """ 

96 

97 def __init__(self, input_dataset_path, 

98 output_model_path, output_test_table_path=None, output_plot_path=None, properties=None, **kwargs) -> None: 

99 properties = properties or {} 

100 

101 # Call parent class constructor 

102 super().__init__(properties) 

103 self.locals_var_dict = locals().copy() 

104 

105 # Input/Output files 

106 self.io_dict = { 

107 "in": {"input_dataset_path": input_dataset_path}, 

108 "out": {"output_model_path": output_model_path, "output_test_table_path": output_test_table_path, "output_plot_path": output_plot_path} 

109 } 

110 

111 # Properties specific for BB 

112 self.features = properties.get('features', {}) 

113 self.target = properties.get('target', {}) 

114 self.weight = properties.get('weight', {}) 

115 self.validation_size = properties.get('validation_size', 0.1) 

116 self.test_size = properties.get('test_size', 0.1) 

117 self.hidden_layers = properties.get('hidden_layers', []) 

118 self.output_layer_activation = properties.get('output_layer_activation', 'softmax') 

119 self.optimizer = properties.get('optimizer', 'Adam') 

120 self.learning_rate = properties.get('learning_rate', 0.02) 

121 self.batch_size = properties.get('batch_size', 100) 

122 self.max_epochs = properties.get('max_epochs', 100) 

123 self.random_state = properties.get('random_state', 5) 

124 self.scale = properties.get('scale', False) 

125 self.properties = properties 

126 

127 # Check the properties 

128 self.check_properties(properties) 

129 self.check_arguments() 

130 

131 def check_data_params(self, out_log, err_log): 

132 """ Checks all the input/output paths and parameters """ 

133 self.io_dict["in"]["input_dataset_path"] = check_input_path(self.io_dict["in"]["input_dataset_path"], "input_dataset_path", False, out_log, self.__class__.__name__) 

134 self.io_dict["out"]["output_model_path"] = check_output_path(self.io_dict["out"]["output_model_path"], "output_model_path", False, out_log, self.__class__.__name__) 

135 self.io_dict["out"]["output_test_table_path"] = check_output_path(self.io_dict["out"]["output_test_table_path"], "output_test_table_path", True, out_log, self.__class__.__name__) 

136 self.io_dict["out"]["output_plot_path"] = check_output_path(self.io_dict["out"]["output_plot_path"], "output_plot_path", True, out_log, self.__class__.__name__) 

137 

138 def build_model(self, input_shape): 

139 """ Builds Neural network according to hidden_layers property """ 

140 

141 # create model 

142 model = Sequential([]) 

143 

144 # if no hidden_layers provided, create manually a hidden layer with default values 

145 if not self.hidden_layers: 

146 self.hidden_layers = [{'size': 50, 'activation': 'relu'}] 

147 

148 # generate hidden_layers 

149 for i, layer in enumerate(self.hidden_layers): 

150 if i == 0: 

151 model.add(Dense(layer['size'], activation=layer['activation'], kernel_initializer='he_normal', input_shape=input_shape)) # 1st hidden layer 

152 else: 

153 model.add(Dense(layer['size'], activation=layer['activation'], kernel_initializer='he_normal')) 

154 

155 model.add(Dense(1)) # output layer 

156 

157 return model 

158 

159 @launchlogger 

160 def launch(self) -> int: 

161 """Execute the :class:`RegressionNeuralNetwork <neural_networks.regression_neural_network.RegressionNeuralNetwork>` neural_networks.regression_neural_network.RegressionNeuralNetwork object.""" 

162 

163 # check input/output paths and parameters 

164 self.check_data_params(self.out_log, self.err_log) 

165 

166 # Setup Biobb 

167 if self.check_restart(): 

168 return 0 

169 self.stage_files() 

170 

171 # load dataset 

172 fu.log('Getting dataset from %s' % self.io_dict["in"]["input_dataset_path"], self.out_log, self.global_log) 

173 if 'columns' in self.features: 

174 labels = getHeader(self.io_dict["in"]["input_dataset_path"]) 

175 skiprows = 1 

176 else: 

177 labels = None 

178 skiprows = None 

179 data = pd.read_csv(self.io_dict["in"]["input_dataset_path"], header=None, sep="\\s+|;|:|,|\t", engine="python", skiprows=skiprows, names=labels) 

180 

181 X = getFeatures(self.features, data, self.out_log, self.__class__.__name__) 

182 fu.log('Features: [%s]' % (getIndependentVarsList(self.features)), self.out_log, self.global_log) 

183 # target 

184 y = getTarget(self.target, data, self.out_log, self.__class__.__name__) 

185 fu.log('Target: %s' % (str(getTargetValue(self.target))), self.out_log, self.global_log) 

186 # weights 

187 if self.weight: 

188 w = getWeight(self.weight, data, self.out_log, self.__class__.__name__) 

189 

190 # shuffle dataset 

191 fu.log('Shuffling dataset', self.out_log, self.global_log) 

192 shuffled_indices = np.arange(X.shape[0]) 

193 np.random.shuffle(shuffled_indices) 

194 np_X = X.to_numpy() 

195 shuffled_X = np_X[shuffled_indices] 

196 shuffled_y = y[shuffled_indices] 

197 if self.weight: 

198 shuffled_w = w[shuffled_indices] 

199 

200 # train / test split 

201 fu.log('Creating train and test sets', self.out_log, self.global_log) 

202 arrays_sets = (shuffled_X, shuffled_y) 

203 # if user provide weights 

204 if self.weight: 

205 arrays_sets = arrays_sets + (shuffled_w,) 

206 X_train, X_test, y_train, y_test, w_train, w_test = train_test_split(*arrays_sets, test_size=self.test_size, random_state=self.random_state) 

207 else: 

208 X_train, X_test, y_train, y_test = train_test_split(*arrays_sets, test_size=self.test_size, random_state=self.random_state) 

209 

210 # scale dataset 

211 if self.scale: 

212 fu.log('Scaling dataset', self.out_log, self.global_log) 

213 X_train = scale(X_train) 

214 

215 # build model 

216 fu.log('Building model', self.out_log, self.global_log) 

217 model = self.build_model((X_train.shape[1],)) 

218 

219 # model summary 

220 stringlist = [] 

221 model.summary(print_fn=lambda x: stringlist.append(x)) 

222 model_summary = "\n".join(stringlist) 

223 fu.log('Model summary:\n\n%s\n' % model_summary, self.out_log, self.global_log) 

224 

225 # get optimizer 

226 mod = __import__('tensorflow.keras.optimizers', fromlist=[self.optimizer]) 

227 opt_class = getattr(mod, self.optimizer) 

228 opt = opt_class(lr=self.learning_rate) 

229 # compile model 

230 model.compile(optimizer=opt, loss='mse', metrics=['mae', 'mse'], sample_weight_mode='samplewise') 

231 

232 # fitting 

233 fu.log('Training model', self.out_log, self.global_log) 

234 # set an early stopping mechanism 

235 # set patience=2, to be a bit tolerant against random validation loss increases 

236 early_stopping = EarlyStopping(patience=2) 

237 

238 if self.weight: 

239 sample_weight = w_train 

240 class_weight = [] 

241 else: 

242 # TODO: class_weight not working since TF 2.4.1 update 

243 # fu.log('No weight provided, class_weight will be estimated from the target data', self.out_log, self.global_log) 

244 sample_weight = None 

245 class_weight = [] # compute_class_weight('balanced', np.unique(y_train), y_train) 

246 

247 # fit the model 

248 mf = model.fit(X_train, 

249 y_train, 

250 class_weight=class_weight, 

251 sample_weight=sample_weight, 

252 batch_size=self.batch_size, 

253 epochs=self.max_epochs, 

254 callbacks=[early_stopping], 

255 validation_split=self.validation_size, 

256 verbose=1) 

257 

258 fu.log('Total epochs performed: %s' % len(mf.history['loss']), self.out_log, self.global_log) 

259 

260 # predict data from X_train 

261 train_predictions = model.predict(X_train) 

262 train_predictions = np.around(train_predictions, decimals=2) 

263 

264 score_train_inputs = (y_train, train_predictions) 

265 if self.weight: 

266 score_train_inputs = score_train_inputs + (w_train,) 

267 train_score = r2_score(*score_train_inputs) 

268 

269 train_metrics = pd.DataFrame() 

270 train_metrics['metric'] = ['Train loss', 'Train MAE', 'Train MSE', 'Train R2', 'Validation loss', 'Validation MAE', 'Validation MSE'] 

271 train_metrics['coefficient'] = [mf.history['loss'][-1], mf.history['mae'][-1], mf.history['mse'][-1], train_score, mf.history['val_loss'][-1], mf.history['val_mae'][-1], mf.history['val_mse'][-1]] 

272 

273 fu.log('Training metrics\n\nTRAINING METRICS TABLE\n\n%s\n' % train_metrics, self.out_log, self.global_log) 

274 

275 # testing 

276 if self.scale: 

277 X_test = scale(X_test) 

278 fu.log('Testing model', self.out_log, self.global_log) 

279 test_loss, test_mae, test_mse = model.evaluate(X_test, y_test) 

280 

281 # predict data from X_test 

282 test_predictions = model.predict(X_test) 

283 test_predictions = np.around(test_predictions, decimals=2) 

284 tpr = np.squeeze(np.asarray(test_predictions)) 

285 

286 score_test_inputs = (y_test, test_predictions) 

287 if self.weight: 

288 score_test_inputs = score_test_inputs + (w_test,) 

289 score = r2_score(*score_test_inputs) 

290 

291 test_metrics = pd.DataFrame() 

292 test_metrics['metric'] = ['Test loss', 'Test MAE', 'Test MSE', 'Test R2'] 

293 test_metrics['coefficient'] = [test_loss, test_mae, test_mse, score] 

294 

295 fu.log('Testing metrics\n\nTESTING METRICS TABLE\n\n%s\n' % test_metrics, self.out_log, self.global_log) 

296 

297 test_table = pd.DataFrame() 

298 test_table['prediction'] = tpr 

299 test_table['target'] = y_test 

300 test_table['residual'] = test_table['target'] - test_table['prediction'] 

301 test_table['difference %'] = np.absolute(test_table['residual']/test_table['target']*100) 

302 pd.set_option('display.float_format', lambda x: '%.2f' % x) 

303 # sort by difference in % 

304 test_table = test_table.sort_values(by=['difference %']) 

305 test_table = test_table.reset_index(drop=True) 

306 fu.log('TEST DATA\n\n%s\n' % test_table, self.out_log, self.global_log) 

307 

308 # save test data 

309 if (self.io_dict["out"]["output_test_table_path"]): 

310 fu.log('Saving testing data to %s' % self.io_dict["out"]["output_test_table_path"], self.out_log, self.global_log) 

311 test_table.to_csv(self.io_dict["out"]["output_test_table_path"], index=False, header=True) 

312 

313 # create test plot 

314 if (self.io_dict["out"]["output_plot_path"]): 

315 fu.log('Saving plot to %s' % self.io_dict["out"]["output_plot_path"], self.out_log, self.global_log) 

316 test_predictions = test_predictions.flatten() 

317 train_predictions = model.predict(X_train).flatten() 

318 plot = plotResultsReg(mf.history, y_test, test_predictions, y_train, train_predictions) 

319 plot.savefig(self.io_dict["out"]["output_plot_path"], dpi=150) 

320 

321 # save model and parameters 

322 vars_obj = { 

323 'features': self.features, 

324 'target': self.target, 

325 'scale': self.scale, 

326 'type': 'regression' 

327 } 

328 variables = json.dumps(vars_obj) 

329 fu.log('Saving model to %s' % self.io_dict["out"]["output_model_path"], self.out_log, self.global_log) 

330 with h5py.File(self.io_dict["out"]["output_model_path"], mode='w') as f: 

331 hdf5_format.save_model_to_hdf5(model, f) 

332 f.attrs['variables'] = variables 

333 

334 # Copy files to host 

335 self.copy_to_host() 

336 

337 self.tmp_files.extend([ 

338 self.stage_io_dict.get("unique_dir") 

339 ]) 

340 self.remove_tmp_files() 

341 

342 self.check_arguments(output_files_created=True, raise_exception=False) 

343 

344 return 0 

345 

346 

347def regression_neural_network(input_dataset_path: str, output_model_path: str, output_test_table_path: str = None, output_plot_path: str = None, properties: dict = None, **kwargs) -> int: 

348 """Execute the :class:`RegressionNeuralNetwork <neural_networks.regression_neural_network.RegressionNeuralNetwork>` class and 

349 execute the :meth:`launch() <neural_networks.regression_neural_network.RegressionNeuralNetwork.launch>` method.""" 

350 

351 return RegressionNeuralNetwork(input_dataset_path=input_dataset_path, 

352 output_model_path=output_model_path, 

353 output_test_table_path=output_test_table_path, 

354 output_plot_path=output_plot_path, 

355 properties=properties, **kwargs).launch() 

356 

357 

358def main(): 

359 """Command line execution of this building block. Please check the command line documentation.""" 

360 parser = argparse.ArgumentParser(description="Wrapper of the TensorFlow Keras Sequential method.", formatter_class=lambda prog: argparse.RawTextHelpFormatter(prog, width=99999)) 

361 parser.add_argument('--config', required=False, help='Configuration file') 

362 

363 # Specific args of each building block 

364 required_args = parser.add_argument_group('required arguments') 

365 required_args.add_argument('--input_dataset_path', required=True, help='Path to the input dataset. Accepted formats: csv.') 

366 required_args.add_argument('--output_model_path', required=True, help='Path to the output model file. Accepted formats: h5.') 

367 parser.add_argument('--output_test_table_path', required=False, help='Path to the test table file. Accepted formats: csv.') 

368 parser.add_argument('--output_plot_path', required=False, help='Loss, MAE and MSE plots. Accepted formats: png.') 

369 

370 args = parser.parse_args() 

371 args.config = args.config or "{}" 

372 properties = settings.ConfReader(config=args.config).get_prop_dic() 

373 

374 # Specific call of each building block 

375 regression_neural_network(input_dataset_path=args.input_dataset_path, 

376 output_model_path=args.output_model_path, 

377 output_test_table_path=args.output_test_table_path, 

378 output_plot_path=args.output_plot_path, 

379 properties=properties) 

380 

381 

382if __name__ == '__main__': 

383 main()